File size: 6,953 Bytes
6bdfadb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import matplotlib as mpl
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.collections import LineCollection
import fastf1 as ff1
from PIL import Image
from io import BytesIO
from typing import Union
import json

# Custom types
gp = Union[str, int]
session_type = Union[str, int, None]


def rotate(xy, *, angle):
    rot_mat = np.array([[np.cos(angle), np.sin(angle)],
                        [-np.sin(angle), np.cos(angle)]])
    return np.matmul(xy, rot_mat)



def create_track_speed_visualization(session, driver_name: str) -> Image:

    weekend = session.event
    session.load()
    with open("assets/driver_abbreviations.json") as f:
        driver_abbreviations = json.load(f)
        driver_abbreviation = driver_abbreviations[driver_name]
    lap = session.laps.pick_drivers(driver_abbreviation).pick_fastest()

    # Get telemetry data
    x = lap.telemetry['X']              # values for x-axis
    y = lap.telemetry['Y']              # values for y-axis
    color = lap.telemetry['Speed']      # value to base color gradient on


    points = np.array([x, y]).T.reshape(-1, 1, 2)
    segments = np.concatenate([points[:-1], points[1:]], axis=1)

    # We create a plot with title and adjust some setting to make it look good.
    fig, ax = plt.subplots(sharex=True, sharey=True, figsize=(12, 6.75))
    fig.suptitle(f'{weekend["EventName"]} - {driver_name} ', size=24, y=0.97)

    # Adjust margins and turn of axis
    plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.12)
    ax.axis('off')

    # After this, we plot the data itself.
    # Create background track line
    ax.plot(lap.telemetry['X'], lap.telemetry['Y'],
            color='black', linestyle='-', linewidth=16, zorder=0)

    # Create a continuous norm to map from data points to colors
    norm = plt.Normalize(color.min(), color.max())
    lc = LineCollection(segments, cmap=mpl.colormaps['viridis'], norm=norm,
                        linestyle='-', linewidth=5)

    # Set the values used for colormapping
    lc.set_array(color)

    # Merge all line segments together
    line = ax.add_collection(lc)

    # Finally, we create a color bar as a legend.
    cbaxes = fig.add_axes([0.25, 0.05, 0.5, 0.05])
    normlegend = mpl.colors.Normalize(vmin=color.min(), vmax=color.max())
    legend = mpl.colorbar.ColorbarBase(cbaxes, norm=normlegend, cmap=mpl.colormaps['viridis'],
                                    orientation="horizontal")

    # Create a PIL image from the plot
    fig = plt.gcf()
    
    # Save the figure to a BytesIO buffer and convert to bytes
    buf = BytesIO()
    fig.savefig(buf, format='png', dpi=150, bbox_inches='tight')
    buf.seek(0)
    
    # Create PIL image from buffer bytes and close the figure
    img_data = buf.getvalue()
    plt.close(fig)
    buf.close()
    
    # Create new image from the raw bytes
    img = Image.open(BytesIO(img_data))
    return img


def create_track_corners_visualization(session) -> Image:
    
    lap = session.laps.pick_fastest()
    pos = lap.get_pos_data()

    circuit_info = session.get_circuit_info()


    # Get an array of shape [n, 2] where n is the number of points and the second
    # axis is x and y.
    track = pos.loc[:, ('X', 'Y')].to_numpy()

    # Convert the rotation angle from degrees to radian.
    track_angle = circuit_info.rotation / 180 * np.pi

    # Rotate and plot the track map.
    rotated_track = rotate(track, angle=track_angle)
    plt.plot(rotated_track[:, 0], rotated_track[:, 1])

    offset_vector = [500, 0]  # offset length is chosen arbitrarily to 'look good'

    # Iterate over all corners.
    for _, corner in circuit_info.corners.iterrows():
        # Create a string from corner number and letter
        txt = f"{corner['Number']}{corner['Letter']}"

        # Convert the angle from degrees to radian.
        offset_angle = corner['Angle'] / 180 * np.pi

        # Rotate the offset vector so that it points sideways from the track.
        offset_x, offset_y = rotate(offset_vector, angle=offset_angle)

        # Add the offset to the position of the corner
        text_x = corner['X'] + offset_x
        text_y = corner['Y'] + offset_y

        # Rotate the text position equivalently to the rest of the track map
        text_x, text_y = rotate([text_x, text_y], angle=track_angle)

        # Rotate the center of the corner equivalently to the rest of the track map
        track_x, track_y = rotate([corner['X'], corner['Y']], angle=track_angle)

        # Draw a circle next to the track.
        plt.scatter(text_x, text_y, color='grey', s=140)

        # Draw a line from the track to this circle.
        plt.plot([track_x, text_x], [track_y, text_y], color='grey')

        # Finally, print the corner number inside the circle.
        plt.text(text_x, text_y, txt,
                va='center_baseline', ha='center', size='small', color='white')


    plt.title(session.event['Location'])
    plt.xticks([])
    plt.yticks([])
    plt.axis('equal')
    
    # Create a PIL image from the plot
    fig = plt.gcf()
    
    # Save the figure to a BytesIO buffer and convert to bytes
    buf = BytesIO()
    fig.savefig(buf, format='png', dpi=150, bbox_inches='tight')
    buf.seek(0)
    
    # Create PIL image from buffer bytes and close the figure
    img_data = buf.getvalue()
    plt.close(fig)
    buf.close()
    
    # Create new image from the raw bytes
    img = Image.open(BytesIO(img_data))
    return img


def create_track_gear_visualization(session) -> Image:

    lap = session.laps.pick_fastest()
    tel = lap.get_telemetry()

    x = np.array(tel['X'].values)
    y = np.array(tel['Y'].values)

    points = np.array([x, y]).T.reshape(-1, 1, 2)
    segments = np.concatenate([points[:-1], points[1:]], axis=1)
    gear = tel['nGear'].to_numpy().astype(float)

    cmap = plt.cm.get_cmap('viridis', 8)
    norm = plt.Normalize(1, 8)
    lc_comp = LineCollection(segments, norm=norm, cmap=cmap)
    lc_comp.set_array(gear)
    lc_comp.set_linewidth(4)

    plt.gca().add_collection(lc_comp)
    plt.axis('equal')
    plt.tick_params(labelleft=False, left=False, labelbottom=False, bottom=False)

    plt.suptitle(
        f"Fastest Lap Gear Shift Visualization\n"
        f"{lap['Driver']} - {session.event['EventName']}"
    )

    cbar = plt.colorbar(mappable=lc_comp, label="Gear")
    cbar.set_ticks(np.arange(1, 9))  # Set ticks at integer positions
    cbar.set_ticklabels(np.arange(1, 9))  # Labels from 1 to 8

    # Create a PIL image from the plot
    fig = plt.gcf()
    
    # Save the figure to a BytesIO buffer and convert to bytes
    buf = BytesIO()
    fig.savefig(buf, format='png', dpi=150, bbox_inches='tight')
    buf.seek(0)
    
    # Create PIL image from buffer bytes and close the figure
    img_data = buf.getvalue()
    plt.close(fig)
    buf.close()
    
    # Create new image from the raw bytes
    img = Image.open(BytesIO(img_data))
    return img