import math import gradio as gr def solve_trig_equations(a: float, b: float, c: float, trig_func: str, interval_degrees: tuple[float, float] = (0, 360)) -> str: """ Solves basic trigonometric equations of the form a * func(x) + b = c. Finds solutions for x within a given interval (in degrees). Args: a: Coefficient of the trigonometric function. b: Constant term added to the function part. c: Constant term on the other side of the equation. trig_func: The trigonometric function ("sin", "cos", "tan"). interval_degrees: Tuple (min_angle, max_angle) for solutions in degrees. Returns: A string describing the solutions in degrees. """ if a == 0: return "Error: Coefficient 'a' cannot be zero." val = (c - b) / a func = trig_func.lower() solutions_deg = [] if func == "sin": if not (-1 <= val <= 1): return f"No solution: sin(x) cannot be {val:.4f}." angle_rad_principal = math.asin(val) elif func == "cos": if not (-1 <= val <= 1): return f"No solution: cos(x) cannot be {val:.4f}." angle_rad_principal = math.acos(val) elif func == "tan": angle_rad_principal = math.atan(val) else: return "Error: Invalid trigonometric function. Choose 'sin', 'cos', or 'tan'." angle_deg_principal = math.degrees(angle_rad_principal) min_interval_deg, max_interval_deg = interval_degrees for n in range(int(min_interval_deg / 360) - 2, int(max_interval_deg / 360) + 3): if func == "sin": sol1_deg = n * 360 + angle_deg_principal sol2_deg = n * 360 + (180 - angle_deg_principal) if min_interval_deg <= sol1_deg <= max_interval_deg: solutions_deg.append(sol1_deg) if min_interval_deg <= sol2_deg <= max_interval_deg: solutions_deg.append(sol2_deg) elif func == "cos": sol1_deg = n * 360 + angle_deg_principal sol2_deg = n * 360 - angle_deg_principal if min_interval_deg <= sol1_deg <= max_interval_deg: solutions_deg.append(sol1_deg) if min_interval_deg <= sol2_deg <= max_interval_deg: solutions_deg.append(sol2_deg) elif func == "tan": for n_tan in range(int(min_interval_deg / 180) - 2, int(max_interval_deg / 180) + 3): sol_deg = n_tan * 180 + angle_deg_principal if min_interval_deg <= sol_deg <= max_interval_deg: solutions_deg.append(sol_deg) unique_solutions = sorted(list(set(f"{s:.2f}" for s in solutions_deg))) if not unique_solutions: return f"No solutions found for {a}*{func}(x) + {b} = {c} in the interval [{min_interval_deg}, {max_interval_deg}] degrees." return f"Solutions for x in [{min_interval_deg}, {max_interval_deg}] degrees: {', '.join(unique_solutions)}" def parse_interval(interval_str: str) -> tuple[float, float]: try: parts = [float(x.strip()) for x in interval_str.split(',')] if len(parts) == 2 and parts[0] <= parts[1]: return parts[0], parts[1] raise ValueError("Interval must be two numbers, min,max.") except Exception: raise gr.Error("Invalid interval format. Use 'min,max' (e.g., '0,360').") solve_trig_equations_interface = gr.Interface( fn=lambda a, b, c, func, interval_str: solve_trig_equations(a, b, c, func, parse_interval(interval_str)), inputs=[ gr.Number(label="a (coefficient of function)"), gr.Number(label="b (constant added to function part)"), gr.Number(label="c (constant on other side of equation)"), gr.Radio(["sin", "cos", "tan"], label="Trigonometric Function"), gr.Textbox(label="Interval for x (degrees, comma-separated, e.g., 0,360)", value="0,360") ], outputs="text", title="Trigonometric Equation Solver", description="Solves equations like a * func(x) + b = c for x in a given interval (degrees). Enter the coefficients, select the function, and specify the interval for x. Example: Solve 2*sin(x) + 1 = 1 for x in [0,360] degrees.", examples=[ [2, 1, 1, "sin", "0,360"], [1, 0, 0.5, "cos", "0,360"], [1, 0, 1, "tan", "0,360"], [1, 0, 2, "sin", "0,360"] ] )