Spaces:
Runtime error
Runtime error
File size: 28,422 Bytes
1599566 79bc79a 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 d8c6327 1599566 79bc79a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 |
import numpy as np
import sys
from .solve_lp_via_dual import solve_lp_via_dual
from .solve_primal_directly import solve_primal_directly
import gradio as gr
from maths.operations_research.utils import parse_matrix
from maths.operations_research.utils import parse_vector
def parse_relations(input_str: str) -> list[str]:
"""Parses a comma-separated string of relations into a list of strings."""
if not input_str:
return []
try:
relations = [r.strip() for r in input_str.split(',')]
valid_relations = {"<=", ">=", "="}
if not all(r in valid_relations for r in relations):
invalid_rels = [r for r in relations if r not in valid_relations]
gr.Warning(f"Invalid relation(s) found: {', '.join(invalid_rels)}. Allowed relations are: '<=', '>=', '='.")
return []
return relations
except Exception as e: # Catch any other unexpected errors during parsing
gr.Warning(f"Error parsing relations: '{input_str}'. Error: {e}")
return []
TOLERANCE = 1e-9
class DualSimplexSolver:
"""
Solves a Linear Programming problem using the Dual Simplex Method.
Assumes the problem is provided in the form:
Maximize/Minimize c^T * x
Subject to:
A * x <= / >= / = b
x >= 0
The algorithm works best when the initial tableau (after converting all
constraints to <=) is dual feasible (objective row coefficients >= 0 for Max)
but primal infeasible (some RHS values are negative).
"""
def __init__(self, objective_type, c, A, relations, b):
"""
Initializes the solver.
Args:
objective_type (str): 'max' or 'min'.
c (list or np.array): Coefficients of the objective function.
A (list of lists or np.array): Coefficients of the constraints LHS.
relations (list): List of strings ('<=', '>=', '=') for each constraint.
b (list or np.array): RHS values of the constraints.
"""
self.objective_type = objective_type.lower()
self.original_c = np.array(c, dtype=float)
self.original_A = np.array(A, dtype=float)
self.original_relations = relations
self.original_b = np.array(b, dtype=float)
self.num_original_vars = len(c)
self.num_constraints = len(b)
self.tableau = None
self.basic_vars = [] # Indices of basic variables (column index)
self.var_names = [] # Names like 'x1', 's1', etc.
self.is_minimized_problem = False # Flag to adjust final Z
self.log_messages = []
self._preprocess()
def _preprocess(self):
"""
Converts the problem to the standard form for Dual Simplex:
- Maximization objective
- All constraints are <=
- Adds slack variables
- Builds the initial tableau
"""
# --- 1. Handle Objective Function ---
if self.objective_type == 'min':
self.is_minimized_problem = True
current_c = -self.original_c
else:
current_c = self.original_c
# --- 2. Handle Constraints and Slack Variables ---
num_slacks_added = 0
processed_A = []
processed_b = []
self.basic_vars = [] # Will store column indices of basic vars
# Create variable names
self.var_names = [f'x{i+1}' for i in range(self.num_original_vars)]
slack_var_names = []
for i in range(self.num_constraints):
A_row = self.original_A[i]
b_val = self.original_b[i]
relation = self.original_relations[i]
if relation == '>=':
# Multiply by -1 to convert to <=
processed_A.append(-A_row)
processed_b.append(-b_val)
elif relation == '=':
# Convert Ax = b into Ax <= b and Ax >= b
# First: Ax <= b
processed_A.append(A_row)
processed_b.append(b_val)
# Second: Ax >= b --> -Ax <= -b
processed_A.append(-A_row)
processed_b.append(-b_val)
elif relation == '<=':
processed_A.append(A_row)
processed_b.append(b_val)
else:
raise ValueError(f"Invalid relation symbol: {relation}")
# Update number of effective constraints after handling '='
effective_num_constraints = len(processed_b)
# Add slack variables for all processed constraints (which are now all <=)
num_slack_vars = effective_num_constraints
final_A = np.zeros((effective_num_constraints, self.num_original_vars + num_slack_vars))
final_b = np.array(processed_b, dtype=float)
# Populate original variable coefficients
final_A[:, :self.num_original_vars] = np.array(processed_A, dtype=float)
# Add slack variable identity matrix part and names
for i in range(effective_num_constraints):
slack_col_index = self.num_original_vars + i
final_A[i, slack_col_index] = 1
slack_var_names.append(f's{i+1}')
self.basic_vars.append(slack_col_index) # Initially, slacks are basic
self.var_names.extend(slack_var_names)
# --- 3. Build the Tableau ---
num_total_vars = self.num_original_vars + num_slack_vars
# Rows: 1 for objective + number of constraints
# Cols: 1 for Z + number of total vars + 1 for RHS
self.tableau = np.zeros((effective_num_constraints + 1, num_total_vars + 2))
# Row 0 (Objective Z): [1, -c, 0_slacks, 0_rhs]
self.tableau[0, 0] = 1 # Z coefficient
self.tableau[0, 1:self.num_original_vars + 1] = -current_c
# Slack coefficients in objective are 0 initially
# RHS of objective row is 0 initially
# Rows 1 to m (Constraints): [0, A_final, b_final]
self.tableau[1:, 1:num_total_vars + 1] = final_A
self.tableau[1:, -1] = final_b
# Ensure the initial objective row is dual feasible (non-negative coeffs for Max)
# We rely on the user providing a problem where this holds after conversion.
if np.any(self.tableau[0, 1:-1] < -TOLERANCE):
self.log_messages.append("\nWarning: Initial tableau is not dual feasible (objective row has negative coefficients).")
self.log_messages.append("The standard Dual Simplex method might not apply directly or may require Phase I.")
# For this implementation, we'll proceed, but it might fail if assumption is violated.
def _print_tableau(self, iteration):
"""Formats the current state of the tableau into a string."""
tableau_str_lines = []
tableau_str_lines.append(f"\n--- Iteration {iteration} ---")
header = ["BV"] + ["Z"] + self.var_names + ["RHS"]
tableau_str_lines.append(" ".join(f"{h:>8}" for h in header))
tableau_str_lines.append("-" * (len(header) * 9))
basic_var_map = {idx: name for idx, name in enumerate(self.var_names)}
row_basic_vars = ["Z"] + [basic_var_map.get(bv_idx, f'col{bv_idx}') for bv_idx in self.basic_vars]
for i, row_bv_name in enumerate(row_basic_vars):
row_str_parts = [f"{row_bv_name:>8}"]
row_str_parts.extend([f"{val: >8.3f}" for val in self.tableau[i]])
tableau_str_lines.append(" ".join(row_str_parts))
tableau_str_lines.append("-" * (len(header) * 9))
return "\n".join(tableau_str_lines)
def _find_pivot_row(self):
"""Finds the index of the leaving variable (pivot row)."""
rhs_values = self.tableau[1:, -1]
# Find the index of the most negative RHS value (among constraints)
if np.all(rhs_values >= -TOLERANCE):
return -1 # All RHS non-negative, current solution is feasible (and optimal)
pivot_row_index = np.argmin(rhs_values) + 1 # +1 because we skip obj row 0
# Check if the minimum value is actually negative
if self.tableau[pivot_row_index, -1] >= -TOLERANCE:
return -1 # Should not happen if np.all check passed, but safety check
self.log_messages.append(f"\nStep: Select Pivot Row (Leaving Variable)")
self.log_messages.append(f" RHS values (b): {rhs_values}")
leaving_var_idx = self.basic_vars[pivot_row_index - 1]
leaving_var_name = self.var_names[leaving_var_idx]
self.log_messages.append(f" Most negative RHS is {self.tableau[pivot_row_index, -1]:.3f} in Row {pivot_row_index} (Basic Var: {leaving_var_name}).")
self.log_messages.append(f" Leaving Variable: {leaving_var_name} (Row {pivot_row_index})")
return pivot_row_index
def _find_pivot_col(self, pivot_row_index):
"""Finds the index of the entering variable (pivot column)."""
pivot_row = self.tableau[pivot_row_index, 1:-1] # Exclude Z and RHS cols
objective_row = self.tableau[0, 1:-1] # Exclude Z and RHS cols
ratios = {}
min_ratio = float('inf')
pivot_col_index = -1
self.log_messages.append(f"\nStep: Select Pivot Column (Entering Variable) using Ratio Test")
self.log_messages.append(f" Pivot Row (Row {pivot_row_index}) coefficients (excluding Z, RHS): {pivot_row}")
self.log_messages.append(f" Objective Row coefficients (excluding Z, RHS): {objective_row}")
self.log_messages.append(f" Calculating ratios = ObjCoeff / abs(PivotRowCoeff) for PivotRowCoeff < 0:")
found_negative_coeff = False
for j, coeff in enumerate(pivot_row):
col_var_index = j # This is the index within the var_names list
col_tableau_index = j + 1 # This is the index in the full tableau row
if coeff < -TOLERANCE: # Must be strictly negative
found_negative_coeff = True
obj_coeff = objective_row[j]
ratio = obj_coeff / (-coeff)
ratios[col_var_index] = ratio
self.log_messages.append(f" Var {self.var_names[col_var_index]} (Col {col_tableau_index}): Coeff={coeff:.3f}, ObjCoeff={obj_coeff:.3f}, Ratio = {obj_coeff:.3f} / {-coeff:.3f} = {ratio:.3f}")
if ratio < min_ratio:
min_ratio = ratio
pivot_col_index = col_tableau_index
if not found_negative_coeff:
self.log_messages.append(" No negative coefficients found in the pivot row.")
return -1
min_ratio_vars = [idx for idx, r in ratios.items() if abs(r - min_ratio) < TOLERANCE]
if len(min_ratio_vars) > 1:
self.log_messages.append(f" Tie detected for minimum ratio ({min_ratio:.3f}) among variables: {[self.var_names[idx] for idx in min_ratio_vars]}.")
pivot_col_index = min(min_ratio_vars) + 1
self.log_messages.append(f" Applying Bland's rule: Choosing variable with smallest index: {self.var_names[pivot_col_index - 1]}.")
elif pivot_col_index != -1:
entering_var_name = self.var_names[pivot_col_index - 1]
self.log_messages.append(f" Minimum ratio is {min_ratio:.3f} for variable {entering_var_name} (Column {pivot_col_index}).")
self.log_messages.append(f" Entering Variable: {entering_var_name} (Column {pivot_col_index})")
else:
self.log_messages.append("Error in ratio calculation or tie-breaking.")
return -2
return pivot_col_index
def _pivot(self, pivot_row_index, pivot_col_index):
"""Performs the pivot operation."""
pivot_element = self.tableau[pivot_row_index, pivot_col_index]
self.log_messages.append(f"\nStep: Pivot Operation")
self.log_messages.append(f" Pivot Element: {pivot_element:.3f} at (Row {pivot_row_index}, Col {pivot_col_index})")
if abs(pivot_element) < TOLERANCE:
self.log_messages.append("Error: Pivot element is zero. Cannot proceed.")
raise ZeroDivisionError("Pivot element is too close to zero.")
self.log_messages.append(f" Normalizing Pivot Row {pivot_row_index} by dividing by {pivot_element:.3f}")
self.tableau[pivot_row_index, :] /= pivot_element
self.log_messages.append(f" Eliminating other entries in Pivot Column {pivot_col_index}:")
for i in range(self.tableau.shape[0]):
if i != pivot_row_index:
factor = self.tableau[i, pivot_col_index]
if abs(factor) > TOLERANCE:
self.log_messages.append(f" Row {i} = Row {i} - ({factor:.3f}) * (New Row {pivot_row_index})")
self.tableau[i, :] -= factor * self.tableau[pivot_row_index, :]
old_basic_var_index = self.basic_vars[pivot_row_index - 1]
new_basic_var_index = pivot_col_index - 1
self.basic_vars[pivot_row_index - 1] = new_basic_var_index
self.log_messages.append(f" Updating Basic Variables: {self.var_names[new_basic_var_index]} replaces {self.var_names[old_basic_var_index]} in the basis for Row {pivot_row_index}.")
def solve(self, use_fallbacks=True):
"""
Executes the Dual Simplex algorithm.
Returns:
tuple: (final_solution_str, final_objective_str, log_messages, is_fallback_used_str)
"""
self.log_messages = [] # Clear log for this run
self.log_messages.append("--- Starting Dual Simplex Method ---")
is_fallback_used_str = "No"
if self.tableau is None:
self.log_messages.append("Error: Tableau not initialized.")
return "Error", "Tableau not initialized", self.log_messages, is_fallback_used_str
iteration = 0
tableau_str = self._print_tableau(iteration)
self.log_messages.append(tableau_str)
while iteration < 100:
iteration += 1
pivot_row_index = self._find_pivot_row()
if pivot_row_index == -1:
self.log_messages.append("\n--- Optimal Solution Found ---")
self.log_messages.append(" All RHS values are non-negative.")
objective_str, solution_details_str = self._print_results()
# _print_results already appends to log, so just return them
return solution_details_str, objective_str, self.log_messages, is_fallback_used_str
pivot_col_index = self._find_pivot_col(pivot_row_index)
if pivot_col_index == -1:
self.log_messages.append("\n--- Primal Problem Infeasible ---")
self.log_messages.append(f" All coefficients in Pivot Row {pivot_row_index} are non-negative, but RHS is negative.")
self.log_messages.append(" The dual problem is unbounded, implying the primal problem has no feasible solution.")
if use_fallbacks:
is_fallback_used_str = "Yes"
return self._handle_fallback_results("primal_infeasible")
return "Infeasible", "N/A", self.log_messages, is_fallback_used_str
elif pivot_col_index == -2:
self.log_messages.append("\n--- Error during pivot column selection ---")
if use_fallbacks:
is_fallback_used_str = "Yes"
return self._handle_fallback_results("pivot_error")
return "Error", "Pivot selection error", self.log_messages, is_fallback_used_str
try:
self._pivot(pivot_row_index, pivot_col_index)
except ZeroDivisionError as e:
self.log_messages.append(f"\n--- Error during pivot operation: {e} ---")
if use_fallbacks:
is_fallback_used_str = "Yes"
return self._handle_fallback_results("numerical_instability")
return "Error", "Numerical instability", self.log_messages, is_fallback_used_str
tableau_str = self._print_tableau(iteration)
self.log_messages.append(tableau_str)
self.log_messages.append("\n--- Maximum Iterations Reached ---")
self.log_messages.append(" The algorithm did not converge within the iteration limit.")
self.log_messages.append(" This might indicate cycling or a very large problem.")
if use_fallbacks:
is_fallback_used_str = "Yes"
return self._handle_fallback_results("iteration_limit")
return "Error", "Max iterations reached", self.log_messages, is_fallback_used_str
def _handle_fallback_results(self, error_type_for_primary_solver):
""" Helper to process results from _try_fallback_solvers and structure return for solve() """
fallback_results = self._try_fallback_solvers(error_type_for_primary_solver)
final_solution_str = "Fallback attempted."
final_objective_str = "N/A"
is_fallback_used_str = f"Yes, due to {error_type_for_primary_solver}."
# Check dual_approach_result first
if fallback_results.get("dual_approach_result"):
res = fallback_results["dual_approach_result"]
is_fallback_used_str += f" Dual Approach: {res['message']}."
if res["status"] == 0 and res["primal_solution"] is not None:
final_objective_str = f"{res['objective_value']:.6f} (via Dual Approach)"
final_solution_str = ", ".join([f"x{i+1}={v:.3f}" for i, v in enumerate(res["primal_solution"])])
return final_solution_str, final_objective_str, self.log_messages, is_fallback_used_str
# Then check direct_solver_result
if fallback_results.get("direct_solver_result"):
res = fallback_results["direct_solver_result"]
is_fallback_used_str += f" Direct Solver: {res['message']}."
if res["status"] == 0 and res["primal_solution"] is not None:
final_objective_str = f"{res['objective_value']:.6f} (via Direct Solver)"
final_solution_str = ", ".join([f"x{i+1}={v:.3f}" for i, v in enumerate(res["primal_solution"])])
return final_solution_str, final_objective_str, self.log_messages, is_fallback_used_str
# If both fallbacks failed or didn't yield a solution
final_solution_str = "All solvers failed or problem is infeasible/unbounded."
self.log_messages.append(final_solution_str)
return final_solution_str, final_objective_str, self.log_messages, is_fallback_used_str
def _try_fallback_solvers(self, error_type):
"""
Tries alternative solvers. Appends to self.log_messages.
Returns dict of results.
"""
self.log_messages.append(f"\n--- Using Fallback Solvers due to '{error_type}' ---")
results = {
"error_type": error_type,
"dual_simplex_result": None, # This would be the state if Dual Simplex had a result
"dual_approach_result": None,
"direct_solver_result": None
}
self.log_messages.append("\n=== Attempting to solve via Dual Approach with Complementary Slackness ===")
status, message, primal_sol, dual_sol, obj_val = solve_lp_via_dual(
self.objective_type, self.original_c, self.original_A,
self.original_relations, self.original_b
)
results["dual_approach_result"] = {
"status": status, "message": message, "primal_solution": primal_sol,
"dual_solution": dual_sol, "objective_value": obj_val
}
self.log_messages.append(f"Dual Approach Result: {message}")
if status == 0 and primal_sol is not None:
self.log_messages.append(f"Objective Value (Dual Approach): {obj_val}")
# No early return, let solve() decide based on this dict
self.log_messages.append("\n=== Attempting direct solution using SciPy's linprog solver ===")
status_direct, message_direct, primal_sol_direct, _, obj_val_direct = solve_primal_directly(
self.objective_type, self.original_c, self.original_A,
self.original_relations, self.original_b
)
results["direct_solver_result"] = {
"status": status_direct, "message": message_direct,
"primal_solution": primal_sol_direct, "objective_value": obj_val_direct
}
self.log_messages.append(f"Direct Solver Result: {message_direct}")
if status_direct == 0 and primal_sol_direct is not None:
self.log_messages.append(f"Objective Value (Direct Solver): {obj_val_direct}")
return results
def _print_results(self):
"""Formats the final solution into strings and appends to log_messages."""
self.log_messages.append("\n--- Final Solution (from Dual Simplex Tableau) ---")
tableau_str = self._print_tableau("Final") # This method now returns a string
self.log_messages.append(tableau_str)
final_obj_value = self.tableau[0, -1]
obj_type_str = "Min Z" if self.is_minimized_problem else "Max Z"
if self.is_minimized_problem:
final_obj_value = -final_obj_value
objective_str = f"Optimal Objective Value ({obj_type_str}): {final_obj_value:.6f}"
self.log_messages.append(objective_str)
solution_details_parts = ["Optimal Variable Values:"]
num_total_vars = len(self.var_names)
final_solution_vector = np.zeros(num_total_vars)
for i, basis_col_idx in enumerate(self.basic_vars):
final_solution_vector[basis_col_idx] = self.tableau[i + 1, -1]
for i in range(self.num_original_vars):
var_name = self.var_names[i]
value = final_solution_vector[i]
solution_details_parts.append(f" {var_name}: {value:.6f}")
solution_details_parts.append("Slack/Surplus Variable Values:")
for i in range(self.num_original_vars, num_total_vars):
var_name = self.var_names[i]
value = final_solution_vector[i]
if abs(value) > TOLERANCE:
solution_details_parts.append(f" {var_name}: {value:.6f}")
solution_details_str = "\n".join(solution_details_parts)
self.log_messages.append(solution_details_str)
return objective_str, solution_details_str
def solve_dual_simplex_interface(objective_type_str, c_str, A_str, relations_str, b_str):
"""
Wrapper function to connect DualSimplexSolver with Gradio interface.
"""
current_log = ["Initializing Dual Simplex Solver Interface..."]
c = parse_vector(c_str)
if not c:
current_log.append("Error: Objective coefficients (c) could not be parsed or are empty.")
return "Error parsing c", "Error parsing c", "\n".join(current_log)
A = parse_matrix(A_str)
if A.size == 0:
current_log.append("Error: Constraint matrix (A) could not be parsed or is empty.")
return "Error parsing A", "Error parsing A", "\n".join(current_log)
b = parse_vector(b_str)
if not b:
current_log.append("Error: Constraint bounds (b) could not be parsed or are empty.")
return "Error parsing b", "Error parsing b", "\n".join(current_log)
relations = parse_relations(relations_str)
if not relations:
current_log.append("Error: Constraint relations could not be parsed, are empty, or contain invalid symbols.")
return "Error parsing relations", "Error parsing relations", "\n".join(current_log)
# Basic dimensional validation
if A.shape[0] != len(b):
current_log.append(f"Dimension mismatch: Number of rows in A ({A.shape[0]}) must equal length of b ({len(b)}).")
return "Dimension Error", "Dimension Error", "\n".join(current_log)
if A.shape[1] != len(c):
current_log.append(f"Dimension mismatch: Number of columns in A ({A.shape[1]}) must equal length of c ({len(c)}).")
return "Dimension Error", "Dimension Error", "\n".join(current_log)
if A.shape[0] != len(relations):
current_log.append(f"Dimension mismatch: Number of rows in A ({A.shape[0]}) must equal length of relations ({len(relations)}).")
return "Dimension Error", "Dimension Error", "\n".join(current_log)
current_log.append("Inputs parsed and validated successfully.")
try:
solver = DualSimplexSolver(objective_type_str, c, A, relations, b)
current_log.append("DualSimplexSolver instantiated.")
# The solve method now returns: final_solution_str, final_objective_str, log_messages, is_fallback_used_str
solution_str, objective_str, solver_log_messages, fallback_info = solver.solve()
current_log.extend(solver_log_messages)
current_log.append(f"Fallback Status: {fallback_info}")
return solution_str, objective_str, "\n".join(current_log)
except Exception as e:
gr.Error(f"An error occurred during solving with Dual Simplex: {e}")
current_log.append(f"Runtime error in Dual Simplex: {e}")
return "Solver error", "Solver error", "\n".join(current_log)
dual_simplex_interface = gr.Interface(
fn=solve_dual_simplex_interface,
inputs=[
gr.Radio(label="Objective Type", choices=["max", "min"], value="max"),
gr.Textbox(label="Objective Coefficients (c)", info="Comma-separated, e.g., 4,1"),
gr.Textbox(label="Constraint Matrix (A)", info="Rows separated by ';', elements by ',', e.g., 3,1; 4,3; 1,2"),
gr.Textbox(label="Constraint Relations", info="Comma-separated, e.g., >=,>=,>="), # Dual simplex typically starts from Ax >= b for max problems if to be converted to <=
gr.Textbox(label="Constraint RHS (b)", info="Comma-separated, e.g., 3,6,4")
],
outputs=[
gr.Textbox(label="Optimal Solution (Variables)"),
gr.Textbox(label="Optimal Objective Value"),
gr.Textbox(label="Solver Log, Tableau Steps, and Fallback Info", lines=15, interactive=False)
],
title="Dual Simplex Solver for Linear Programs (LP)",
description="Solves LPs using the Dual Simplex method. This method is often efficient when an initial basic solution is dual feasible but primal infeasible (e.g. after adding cuts). Input Ax R b where R can be '>=', '<=', or '='.",
examples=[
[ # Example 1: Max problem, standard form for dual simplex often has >= constraints initially
# Maximize Z = 4x1 + x2
# Subject to:
# 3x1 + x2 >= 3 --> -3x1 - x2 <= -3
# 4x1 + 3x2 >= 6 --> -4x1 - 3x2 <= -6
# x1 + 2x2 >= 4 --> -x1 - 2x2 <= -4 (Mistake in common example, should be <= to be interesting for dual or needs specific setup)
# Let's use a more typical dual simplex starting point:
# Min C = 2x1 + x2 (so Max -2x1 -x2)
# s.t. x1 + x2 >= 5
# 2x1 + x2 >= 6
# x1, x2 >=0
# Becomes: Max Z' = -2x1 -x2
# -x1 -x2 <= -5
# -2x1 -x2 <= -6
"max", "-2,-1", "-1,-1;-2,-1", "<=,<=", "-5,-6" # This is already in <= form, good for dual if RHS is neg.
],
[ # Example 2: (Taken from a standard textbook example for Dual Simplex)
# Minimize Z = 3x1 + 2x2 + x3
# Subject to:
# 3x1 + x2 + x3 >= 3
# -3x1 + 3x2 + x3 >= 6
# x1 + x2 + x3 <= 3 (This constraint makes it interesting)
# x1,x2,x3 >=0
# For Gradio: obj_type='min', c="3,2,1", A="3,1,1;-3,3,1;1,1,1", relations=">=,>=,<=", b="3,6,3"
"min", "3,2,1", "3,1,1;-3,3,1;1,1,1", ">=,>=,<=", "3,6,3"
],
[ # Example from problem description (slightly modified for typical dual simplex)
# Maximize Z = 3x1 + 2x2
# Subject to:
# 2x1 + x2 <= 18 (Original)
# x1 + x2 <= 12 (Original)
# x1 <= 5 (Original)
# To make it a dual simplex start, we might have transformed it from something else,
# or expect some RHS to be negative after initial setup.
# For a direct input that might be dual feasible but primal infeasible:
# Max Z = x1 + x2
# s.t. -2x1 - x2 <= -10 (i.e. 2x1 + x2 >= 10)
# -x1 - 2x2 <= -10 (i.e. x1 + 2x2 >= 10)
"max", "1,1", "-2,-1;-1,-2", "<=,<=", "-10,-10"
]
],
flagging_mode="manual"
)
|