consilium_mcp / app.py
azettl's picture
changes
e6769b1
raw
history blame
47.3 kB
import gradio as gr
import requests
import json
import os
import asyncio
from datetime import datetime
from typing import Dict, List, Any, Optional, Tuple
from dotenv import load_dotenv
import time
import re
from collections import Counter
import threading
import queue
import uuid
from gradio_consilium_roundtable import consilium_roundtable
from smolagents import CodeAgent, DuckDuckGoSearchTool, FinalAnswerTool, InferenceClientModel, VisitWebpageTool, Tool
# Load environment variables
load_dotenv()
# API Configuration - These will be updated by UI if needed
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
SAMBANOVA_API_KEY = os.getenv("SAMBANOVA_API_KEY")
MODERATOR_MODEL = os.getenv("MODERATOR_MODEL", "mistral")
# Session-based storage for isolated discussions
user_sessions: Dict[str, Dict] = {}
class WikipediaTool(Tool):
name = "wikipedia_search"
description = "Search Wikipedia for comprehensive information on any topic"
inputs = {"query": {"type": "string", "description": "The topic to search for on Wikipedia"}}
output_type = "string"
def forward(self, query: str) -> str:
try:
import wikipedia
# Search for the topic
search_results = wikipedia.search(query, results=3)
if not search_results:
return f"No Wikipedia articles found for: {query}"
# Get the first article
page = wikipedia.page(search_results[0])
summary = page.summary[:1000] + "..." if len(page.summary) > 1000 else page.summary
return f"**Wikipedia: {page.title}**\n\n{summary}\n\nSource: {page.url}"
except Exception as e:
return f"Wikipedia search error: {str(e)}"
class WebSearchAgent:
def __init__(self):
try:
# Use TinyLlama for faster inference
self.agent = CodeAgent(
tools=[
DuckDuckGoSearchTool(),
VisitWebpageTool(),
WikipediaTool(),
FinalAnswerTool()
],
model=InferenceClientModel(),
max_steps=3,
verbosity_level=0
)
except Exception as e:
print(f"Warning: Could not initialize search agent: {e}")
self.agent = None
def search(self, query: str, max_results: int = 5) -> str:
"""Use the CodeAgent to perform comprehensive web search and analysis"""
if not self.agent:
return f"๐Ÿ” **Web Search for:** {query}\n\nSearch agent not available. Please check dependencies."
try:
# Simplified prompt for TinyLlama
agent_prompt = f"Search for information about: {query}"
# Run the agent
result = self.agent.run(agent_prompt)
# Format the result nicely
if result:
return f"๐Ÿ” **Web Research Results for:** {query}\n\n{result}"
else:
return f"๐Ÿ” **Web Search for:** {query}\n\nNo results found."
except Exception as e:
# Fallback to simple error message
return f"๐Ÿ” **Web Search Error for:** {query}\n\nError: {str(e)}\n\nPlease try again or rephrase your query."
def get_session_id(request: gr.Request = None) -> str:
"""Generate or retrieve session ID"""
if request and hasattr(request, 'session_hash'):
return request.session_hash
return str(uuid.uuid4())
def get_or_create_session_state(session_id: str) -> Dict:
"""Get or create isolated session state"""
if session_id not in user_sessions:
user_sessions[session_id] = {
"roundtable_state": {
"participants": [],
"messages": [],
"currentSpeaker": None,
"thinking": [],
"showBubbles": []
},
"discussion_log": [],
"final_answer": "",
"step_by_step_active": False,
"step_continue_event": threading.Event(),
"api_keys": {
"mistral": None,
"sambanova": None
}
}
return user_sessions[session_id]
def update_session_api_keys(mistral_key, sambanova_key, session_id_state, request: gr.Request = None):
"""Update API keys for THIS SESSION ONLY"""
session_id = get_session_id(request) if not session_id_state else session_id_state
session = get_or_create_session_state(session_id)
status_messages = []
# Update keys for THIS SESSION
if mistral_key.strip():
session["api_keys"]["mistral"] = mistral_key.strip()
status_messages.append("โœ… Mistral API key saved for this session")
elif MISTRAL_API_KEY: # Fall back to env var
session["api_keys"]["mistral"] = MISTRAL_API_KEY
status_messages.append("โœ… Using Mistral API key from environment")
else:
status_messages.append("โŒ No Mistral API key available")
if sambanova_key.strip():
session["api_keys"]["sambanova"] = sambanova_key.strip()
status_messages.append("โœ… SambaNova API key saved for this session")
elif SAMBANOVA_API_KEY:
session["api_keys"]["sambanova"] = SAMBANOVA_API_KEY
status_messages.append("โœ… Using SambaNova API key from environment")
else:
status_messages.append("โŒ No SambaNova API key available")
return " | ".join(status_messages), session_id
class VisualConsensusEngine:
def __init__(self, moderator_model: str = None, update_callback=None, session_id: str = None):
self.moderator_model = moderator_model or MODERATOR_MODEL
self.search_agent = WebSearchAgent()
self.update_callback = update_callback
self.session_id = session_id
# Get session-specific keys or fall back to global
session = get_or_create_session_state(session_id) if session_id else {"api_keys": {}}
session_keys = session.get("api_keys", {})
mistral_key = session_keys.get("mistral") or MISTRAL_API_KEY
sambanova_key = session_keys.get("sambanova") or SAMBANOVA_API_KEY
self.models = {
'mistral': {
'name': 'Mistral Large',
'api_key': mistral_key,
'available': bool(mistral_key)
},
'sambanova_deepseek': {
'name': 'DeepSeek-R1',
'api_key': sambanova_key,
'available': bool(sambanova_key)
},
'sambanova_llama': {
'name': 'Meta-Llama-3.1-8B',
'api_key': sambanova_key,
'available': bool(sambanova_key)
},
'sambanova_qwq': {
'name': 'QwQ-32B',
'api_key': sambanova_key,
'available': bool(sambanova_key)
},
'search': {
'name': 'Web Search Agent',
'api_key': True,
'available': True
}
}
# Store session keys for API calls
self.session_keys = {
'mistral': mistral_key,
'sambanova': sambanova_key
}
# Role definitions
self.roles = {
'standard': "You are participating in a collaborative AI discussion. Provide thoughtful, balanced analysis.",
'devils_advocate': "You are the devil's advocate. Challenge assumptions, point out weaknesses, and argue alternative perspectives even if unpopular.",
'fact_checker': "You are the fact checker. Focus on verifying claims, checking accuracy, and identifying potential misinformation.",
'synthesizer': "You are the synthesizer. Focus on finding common ground, combining different perspectives, and building bridges between opposing views.",
'domain_expert': "You are a domain expert. Provide specialized knowledge, technical insights, and authoritative perspective on the topic.",
'creative_thinker': "You are the creative thinker. Approach problems from unusual angles, suggest innovative solutions, and think outside conventional boundaries."
}
def update_visual_state(self, state_update: Dict[str, Any]):
"""Update the visual roundtable state for this session"""
if self.update_callback:
self.update_callback(state_update)
def call_model(self, model: str, prompt: str, context: str = "") -> Optional[str]:
"""Generic model calling function using session-specific keys"""
if model == 'search':
search_query = self._extract_search_query(prompt)
return self.search_agent.search(search_query)
if not self.models[model]['available']:
return None
full_prompt = f"{context}\n\n{prompt}" if context else prompt
try:
if model == 'mistral':
return self._call_mistral(full_prompt)
elif model.startswith('sambanova_'):
return self._call_sambanova(model, full_prompt)
except Exception as e:
print(f"Error calling {model}: {str(e)}")
return None
def _extract_search_query(self, prompt: str) -> str:
"""Extract search query from prompt or generate one"""
lines = prompt.split('\n')
for line in lines:
if 'QUESTION:' in line:
return line.replace('QUESTION:', '').strip()
for line in lines:
if len(line.strip()) > 10:
return line.strip()[:100]
return prompt[:100]
def _call_sambanova(self, model: str, prompt: str) -> Optional[str]:
api_key = self.session_keys.get('sambanova')
if not api_key:
return None
try:
from openai import OpenAI
client = OpenAI(
base_url="https://api.sambanova.ai/v1",
api_key=api_key
)
model_mapping = {
'sambanova_deepseek': 'DeepSeek-R1',
'sambanova_llama': 'Meta-Llama-3.1-8B-Instruct',
'sambanova_qwq': 'QwQ-32B'
}
sambanova_model = model_mapping.get(model, 'Meta-Llama-3.1-8B-Instruct')
completion = client.chat.completions.create(
model=sambanova_model,
messages=[
{"role": "user", "content": prompt}
],
max_tokens=2000,
temperature=0.7
)
return completion.choices[0].message.content
except Exception as e:
print(f"Error calling Sambanova {model}: {str(e)}")
return None
def _call_mistral(self, prompt: str) -> Optional[str]:
api_key = self.session_keys.get('mistral')
if not api_key:
return None
try:
from openai import OpenAI
client = OpenAI(
base_url="https://api.mistral.ai/v1",
api_key=api_key
)
completion = client.chat.completions.create(
model='mistral-large-latest',
messages=[
{"role": "user", "content": prompt}
],
max_tokens=2000,
temperature=0.7
)
return completion.choices[0].message.content
except Exception as e:
print(f"Error calling Mistral API mistral-large-latest: {str(e)}")
return None
def assign_roles(self, models: List[str], role_assignment: str) -> Dict[str, str]:
"""Assign roles to models"""
if role_assignment == "none":
return {model: "standard" for model in models}
roles_to_assign = []
if role_assignment == "balanced":
roles_to_assign = ["devils_advocate", "fact_checker", "synthesizer", "standard"]
elif role_assignment == "specialized":
roles_to_assign = ["domain_expert", "fact_checker", "creative_thinker", "synthesizer"]
elif role_assignment == "adversarial":
roles_to_assign = ["devils_advocate", "devils_advocate", "standard", "standard"]
while len(roles_to_assign) < len(models):
roles_to_assign.append("standard")
model_roles = {}
for i, model in enumerate(models):
model_roles[model] = roles_to_assign[i % len(roles_to_assign)]
return model_roles
def _extract_confidence(self, response: str) -> float:
"""Extract confidence score from response"""
confidence_match = re.search(r'Confidence:\s*(\d+(?:\.\d+)?)', response)
if confidence_match:
try:
return float(confidence_match.group(1))
except ValueError:
pass
return 5.0
def run_visual_consensus_session(self, question: str, discussion_rounds: int = 3,
decision_protocol: str = "consensus", role_assignment: str = "balanced",
topology: str = "full_mesh", moderator_model: str = "mistral",
enable_step_by_step: bool = False, log_function=None):
"""Run consensus with session-isolated visual updates"""
available_models = [model for model, info in self.models.items() if info['available']]
if not available_models:
return "โŒ No AI models available"
model_roles = self.assign_roles(available_models, role_assignment)
participant_names = [self.models[model]['name'] for model in available_models]
# Use session-specific logging
def log_event(event_type: str, speaker: str = "", content: str = "", **kwargs):
if log_function:
log_function(event_type, speaker, content, **kwargs)
# Log the start
log_event('phase', content=f"๐Ÿš€ Starting Discussion: {question}")
log_event('phase', content=f"๐Ÿ“Š Configuration: {len(available_models)} models, {decision_protocol} protocol, {role_assignment} roles")
# Initialize visual state
self.update_visual_state({
"participants": participant_names,
"messages": [],
"currentSpeaker": None,
"thinking": [],
"showBubbles": []
})
all_messages = []
# Phase 1: Initial responses
log_event('phase', content="๐Ÿ“ Phase 1: Initial Responses")
for model in available_models:
# Log and set thinking state
log_event('thinking', speaker=self.models[model]['name'])
self.update_visual_state({
"participants": participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": [self.models[model]['name']]
})
if not enable_step_by_step:
time.sleep(1)
role = model_roles[model]
role_context = self.roles[role]
prompt = f"""{role_context}
QUESTION: {question}
Please provide your initial analysis and answer. Be thoughtful, detailed, and explain your reasoning.
Your response should include:
1. Your direct answer to the question
2. Your reasoning and evidence
3. Any important considerations or nuances
4. END YOUR RESPONSE WITH: "Confidence: X/10" where X is your confidence level"""
# Log and set speaking state
log_event('speaking', speaker=self.models[model]['name'])
self.update_visual_state({
"participants": participant_names,
"messages": all_messages,
"currentSpeaker": self.models[model]['name'],
"thinking": []
})
if not enable_step_by_step:
time.sleep(2)
response = self.call_model(model, prompt)
if response:
confidence = self._extract_confidence(response)
message = {
"speaker": self.models[model]['name'],
"text": response,
"confidence": confidence,
"role": role
}
all_messages.append(message)
# Log the full response
log_event('message',
speaker=self.models[model]['name'],
content=response,
role=role,
confidence=confidence)
# Update with new message
responded_speakers = list(set(msg["speaker"] for msg in all_messages if msg.get("speaker")))
self.update_visual_state({
"participants": participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": [],
"showBubbles": responded_speakers
})
if enable_step_by_step:
session = get_or_create_session_state(self.session_id)
session["step_continue_event"].clear()
session["step_continue_event"].wait()
else:
time.sleep(0.5)
# Phase 2: Discussion rounds
if discussion_rounds > 0:
log_event('phase', content=f"๐Ÿ’ฌ Phase 2: Discussion Rounds ({discussion_rounds} rounds)")
for round_num in range(discussion_rounds):
log_event('phase', content=f"๐Ÿ”„ Discussion Round {round_num + 1}")
for model in available_models:
log_event('thinking', speaker=self.models[model]['name'])
self.update_visual_state({
"participants": participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": [self.models[model]['name']]
})
if not enable_step_by_step:
time.sleep(1)
# Create context of other responses
other_responses = ""
for other_model in available_models:
if other_model != model:
other_responses += f"\n**{self.models[other_model]['name']}**: [Previous response]\n"
discussion_prompt = f"""CONTINUING DISCUSSION FOR: {question}
Round {round_num + 1} of {discussion_rounds}
Other models' current responses:
{other_responses}
Please provide your updated analysis considering the discussion so far.
END WITH: "Confidence: X/10" """
log_event('speaking', speaker=self.models[model]['name'])
self.update_visual_state({
"participants": participant_names,
"messages": all_messages,
"currentSpeaker": self.models[model]['name'],
"thinking": []
})
if not enable_step_by_step:
time.sleep(2)
response = self.call_model(model, discussion_prompt)
if response:
confidence = self._extract_confidence(response)
message = {
"speaker": self.models[model]['name'],
"text": f"Round {round_num + 1}: {response}",
"confidence": confidence,
"role": model_roles[model]
}
all_messages.append(message)
log_event('message',
speaker=self.models[model]['name'],
content=f"Round {round_num + 1}: {response}",
role=model_roles[model],
confidence=confidence)
responded_speakers = list(set(msg["speaker"] for msg in all_messages if msg.get("speaker")))
self.update_visual_state({
"participants": participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": [],
"showBubbles": responded_speakers
})
if enable_step_by_step:
session = get_or_create_session_state(self.session_id)
session["step_continue_event"].clear()
session["step_continue_event"].wait()
else:
time.sleep(1)
# Phase 3: Final consensus
log_event('phase', content=f"๐ŸŽฏ Phase 3: Final Consensus ({decision_protocol})")
log_event('thinking', speaker="All participants", content="Building consensus...")
self.update_visual_state({
"participants": participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": participant_names
})
if not enable_step_by_step:
time.sleep(2)
# Generate consensus
moderator = self.moderator_model if self.models[self.moderator_model]['available'] else available_models[0]
# Collect responses from session log
session = get_or_create_session_state(self.session_id)
all_responses = ""
confidence_scores = []
for entry in session["discussion_log"]:
if entry['type'] == 'message' and entry['speaker'] != 'Consilium':
all_responses += f"\n**{entry['speaker']}**: {entry['content']}\n"
if 'confidence' in entry:
confidence_scores.append(entry['confidence'])
avg_confidence = sum(confidence_scores) / len(confidence_scores) if confidence_scores else 5.0
consensus_threshold = 7.0
consensus_prompt = f"""You are synthesizing the final result from this AI discussion.
ORIGINAL QUESTION: {question}
ALL PARTICIPANT RESPONSES:
{all_responses}
AVERAGE CONFIDENCE LEVEL: {avg_confidence:.1f}/10
Your task:
1. Analyze if the participants reached genuine consensus or if there are significant disagreements
2. If there IS consensus: Provide a comprehensive final answer incorporating all insights
3. If there is NO consensus: Clearly state the disagreements and present the main conflicting positions
4. If partially aligned: Identify areas of agreement and areas of disagreement
Be honest about the level of consensus achieved. Do not force agreement where none exists.
Format your response as:
**CONSENSUS STATUS:** [Reached/Partial/Not Reached]
**FINAL ANSWER:** [Your synthesis]
**AREAS OF DISAGREEMENT:** [If any - explain the key points of contention]"""
log_event('speaking', speaker="Consilium", content="Analyzing consensus and synthesizing final answer...")
self.update_visual_state({
"participants": participant_names,
"messages": all_messages,
"currentSpeaker": "Consilium",
"thinking": []
})
consensus_result = self.call_model(moderator, consensus_prompt)
if not consensus_result:
consensus_result = f"""**CONSENSUS STATUS:** Analysis Failed
**FINAL ANSWER:** Unable to generate consensus analysis. Please review individual participant responses in the discussion log.
**AREAS OF DISAGREEMENT:** Analysis could not be completed due to technical issues."""
consensus_reached = "CONSENSUS STATUS: Reached" in consensus_result or avg_confidence >= consensus_threshold
if consensus_reached:
visual_summary = "โœ… Consensus reached!"
elif "Partial" in consensus_result:
visual_summary = "โš ๏ธ Partial consensus - some disagreements remain"
else:
visual_summary = "โŒ No consensus - significant disagreements identified"
final_message = {
"speaker": "Consilium",
"text": f"{visual_summary} {consensus_result}",
"confidence": avg_confidence,
"role": "consensus"
}
all_messages.append(final_message)
log_event('message',
speaker="Consilium",
content=consensus_result,
confidence=avg_confidence)
responded_speakers = list(set(msg["speaker"] for msg in all_messages if msg.get("speaker")))
self.update_visual_state({
"participants": participant_names,
"messages": all_messages,
"currentSpeaker": None,
"thinking": [],
"showBubbles": responded_speakers
})
log_event('phase', content="โœ… Discussion Complete")
return consensus_result
def update_session_roundtable_state(session_id: str, new_state: Dict):
"""Update roundtable state for specific session"""
session = get_or_create_session_state(session_id)
session["roundtable_state"].update(new_state)
return json.dumps(session["roundtable_state"])
def run_consensus_discussion_session(question: str, discussion_rounds: int = 3,
decision_protocol: str = "consensus", role_assignment: str = "balanced",
topology: str = "full_mesh", moderator_model: str = "mistral",
enable_step_by_step: bool = False, session_id_state: str = None,
request: gr.Request = None):
"""Session-isolated consensus discussion"""
# Get unique session
session_id = get_session_id(request) if not session_id_state else session_id_state
session = get_or_create_session_state(session_id)
# Reset session state for new discussion
session["discussion_log"] = []
session["final_answer"] = ""
session["step_by_step_active"] = enable_step_by_step
session["step_continue_event"].clear()
def session_visual_update_callback(state_update):
"""Session-specific visual update callback"""
update_session_roundtable_state(session_id, state_update)
def session_log_event(event_type: str, speaker: str = "", content: str = "", **kwargs):
"""Add event to THIS session's log only"""
session["discussion_log"].append({
'type': event_type,
'speaker': speaker,
'content': content,
'timestamp': datetime.now().strftime('%H:%M:%S'),
**kwargs
})
# Create engine with session-specific callback
engine = VisualConsensusEngine(moderator_model, session_visual_update_callback, session_id)
# Run consensus with session-specific logging
result = engine.run_visual_consensus_session(
question, discussion_rounds, decision_protocol,
role_assignment, topology, moderator_model,
enable_step_by_step, session_log_event
)
# Generate session-specific final answer
available_models = [model for model, info in engine.models.items() if info['available']]
session["final_answer"] = f"""## ๐ŸŽฏ Final Consensus Answer
{result}
---
### ๐Ÿ“Š Discussion Summary
- **Question:** {question}
- **Protocol:** {decision_protocol.replace('_', ' ').title()}
- **Participants:** {len(available_models)} AI models
- **Roles:** {role_assignment.title()}
- **Session ID:** {session_id[:8]}...
*Generated by Consilium Visual AI Consensus Platform*"""
session["step_by_step_active"] = False
# Format session-specific discussion log
formatted_log = format_session_discussion_log(session["discussion_log"])
return ("โœ… Discussion Complete - See results below",
json.dumps(session["roundtable_state"]),
session["final_answer"],
formatted_log,
session_id)
def format_session_discussion_log(discussion_log: list) -> str:
"""Format discussion log for specific session"""
if not discussion_log:
return "No discussion log available yet."
formatted_log = "# ๐ŸŽญ Complete Discussion Log\n\n"
for entry in discussion_log:
timestamp = entry.get('timestamp', datetime.now().strftime('%H:%M:%S'))
if entry['type'] == 'thinking':
formatted_log += f"**{timestamp}** ๐Ÿค” **{entry['speaker']}** is thinking...\n\n"
elif entry['type'] == 'speaking':
formatted_log += f"**{timestamp}** ๐Ÿ’ฌ **{entry['speaker']}** is responding...\n\n"
elif entry['type'] == 'message':
formatted_log += f"**{timestamp}** โœ… **{entry['speaker']}** ({entry.get('role', 'standard')}):\n"
formatted_log += f"> {entry['content']}\n"
if 'confidence' in entry:
formatted_log += f"*Confidence: {entry['confidence']}/10*\n\n"
else:
formatted_log += "\n"
elif entry['type'] == 'phase':
formatted_log += f"\n---\n## {entry['content']}\n---\n\n"
return formatted_log
def continue_step_session(session_id_state: str):
"""Function called by the Next Step button for specific session"""
if session_id_state and session_id_state in user_sessions:
session = user_sessions[session_id_state]
session["step_continue_event"].set()
return "โœ… Continuing... Next AI will respond shortly"
return "โŒ Session not found"
def check_model_status_session(session_id_state: str = None, request: gr.Request = None):
"""Check and display current model availability for specific session"""
session_id = get_session_id(request) if not session_id_state else session_id_state
session = get_or_create_session_state(session_id)
session_keys = session.get("api_keys", {})
# Get session-specific keys or fall back to env vars
mistral_key = session_keys.get("mistral") or MISTRAL_API_KEY
sambanova_key = session_keys.get("sambanova") or SAMBANOVA_API_KEY
status_info = "## ๐Ÿ” Model Availability Status\n\n"
models = {
'Mistral Large': mistral_key,
'DeepSeek-R1': sambanova_key,
'Meta-Llama-3.1-8B': sambanova_key,
'QwQ-32B': sambanova_key,
'Web Search Agent': True
}
for model_name, available in models.items():
if model_name == 'Web Search Agent':
status = "โœ… Available (Built-in)"
else:
if available:
status = f"โœ… Available (Key: {available[:8]}...)"
else:
status = "โŒ Not configured"
status_info += f"**{model_name}:** {status}\n\n"
return status_info
# Create the hybrid interface
with gr.Blocks(title="๐ŸŽญ Consilium: Visual AI Consensus Platform", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# ๐ŸŽญ Consilium: Visual AI Consensus Platform
**Watch AI models collaborate in real-time around a visual roundtable!**
This platform combines:
- ๐ŸŽจ **Visual Roundtable Interface** - See AI avatars thinking and speaking
- ๐Ÿค– **Multi-Model Consensus** - Mistral, Deepseek, Llama, QwQ
- ๐ŸŽญ **Dynamic Role Assignment** - Devil's advocate, fact checker, synthesizer roles
- ๐ŸŒ **Communication Topologies** - Full mesh, star, ring patterns
- ๐Ÿ—ณ๏ธ **Decision Protocols** - Consensus, voting, weighted, ranked choice
- ๐Ÿ” **Web Search Integration** - Real-time information gathering
- ๐Ÿ”’ **Session Isolation** - Each user gets their own private discussion space
**Perfect for:** Complex decisions, research analysis, creative brainstorming, problem-solving
""")
# Hidden session state component
session_state = gr.State()
with gr.Tab("๐ŸŽญ Visual Consensus Discussion"):
with gr.Row():
with gr.Column(scale=1):
question_input = gr.Textbox(
label="Discussion Question",
placeholder="What would you like the AI council to discuss and decide?",
lines=3,
value="What are the most effective strategies for combating climate change?"
)
with gr.Row():
decision_protocol = gr.Dropdown(
choices=["consensus", "majority_voting", "weighted_voting", "ranked_choice", "unanimity"],
value="consensus",
label="๐Ÿ—ณ๏ธ Decision Protocol"
)
role_assignment = gr.Dropdown(
choices=["balanced", "specialized", "adversarial", "none"],
value="balanced",
label="๐ŸŽญ Role Assignment"
)
with gr.Row():
topology = gr.Dropdown(
choices=["full_mesh", "star", "ring"],
value="full_mesh",
label="๐ŸŒ Communication Pattern"
)
moderator_model = gr.Dropdown(
choices=["mistral", "sambanova_deepseek", "sambanova_llama", "sambanova_qwq"],
value="mistral",
label="๐Ÿ‘จโ€โš–๏ธ Moderator"
)
rounds_input = gr.Slider(
minimum=1, maximum=5, value=2, step=1,
label="๐Ÿ”„ Discussion Rounds"
)
enable_clickthrough = gr.Checkbox(
label="โฏ๏ธ Enable Step-by-Step Mode",
value=False,
info="Pause at each step for manual control"
)
start_btn = gr.Button("๐Ÿš€ Start Visual Consensus Discussion", variant="primary", size="lg")
# Step-by-step control button (only visible when step mode is active)
next_step_btn = gr.Button("โฏ๏ธ Next Step", variant="secondary", size="lg", visible=False)
step_status = gr.Textbox(label="Step Control", visible=False, interactive=False)
status_output = gr.Textbox(label="๐Ÿ“Š Discussion Status", interactive=False)
with gr.Column(scale=2):
# The visual roundtable component
roundtable = consilium_roundtable(
label="๐ŸŽญ AI Consensus Roundtable",
value=json.dumps({
"participants": [],
"messages": [],
"currentSpeaker": None,
"thinking": [],
"showBubbles": []
})
)
# Final answer section
with gr.Row():
final_answer_output = gr.Markdown(
label="๐ŸŽฏ Final Consensus Answer",
value="*Discussion results will appear here...*"
)
# Collapsible discussion log
with gr.Accordion("๐Ÿ“‹ Complete Discussion Log", open=False):
discussion_log_output = gr.Markdown(
value="*Complete discussion transcript will appear here...*"
)
# Event handlers
def on_start_discussion(question, rounds, protocol, roles, topology, moderator, enable_step, session_id_state, request: gr.Request = None):
# Start discussion immediately for both modes
if enable_step:
# Step-by-step mode: Start discussion in background thread
def run_discussion():
run_consensus_discussion_session(question, rounds, protocol, roles, topology, moderator, enable_step, session_id_state, request)
discussion_thread = threading.Thread(target=run_discussion)
discussion_thread.daemon = True
discussion_thread.start()
# Get session ID for this user
session_id = get_session_id(request)
return (
"๐ŸŽฌ Step-by-step mode: Discussion started - will pause after each AI response",
json.dumps(get_or_create_session_state(session_id)["roundtable_state"]),
"*Discussion starting in step-by-step mode...*",
"*Discussion log will appear here...*",
gr.update(visible=True), # Show next step button
gr.update(visible=True, value="Discussion running - will pause after first AI response"), # Show step status
session_id
)
else:
# Normal mode - start immediately and hide step controls
result = run_consensus_discussion_session(question, rounds, protocol, roles, topology, moderator, enable_step, session_id_state, request)
return result + (gr.update(visible=False), gr.update(visible=False))
# Function to toggle step controls visibility
def toggle_step_controls(enable_step):
return (
gr.update(visible=enable_step), # next_step_btn
gr.update(visible=enable_step) # step_status
)
# Hide/show step controls when checkbox changes
enable_clickthrough.change(
toggle_step_controls,
inputs=[enable_clickthrough],
outputs=[next_step_btn, step_status]
)
start_btn.click(
on_start_discussion,
inputs=[question_input, rounds_input, decision_protocol, role_assignment, topology, moderator_model, enable_clickthrough, session_state],
outputs=[status_output, roundtable, final_answer_output, discussion_log_output, next_step_btn, step_status, session_state]
)
# Next step button handler
next_step_btn.click(
continue_step_session,
inputs=[session_state],
outputs=[step_status]
)
# Auto-refresh the roundtable state every 2 seconds during discussion
def refresh_roundtable(session_id_state, request: gr.Request = None):
session_id = get_session_id(request) if not session_id_state else session_id_state
if session_id in user_sessions:
return json.dumps(user_sessions[session_id]["roundtable_state"])
return json.dumps({
"participants": [],
"messages": [],
"currentSpeaker": None,
"thinking": [],
"showBubbles": []
})
gr.Timer(0.5).tick(refresh_roundtable, inputs=[session_state], outputs=[roundtable])
with gr.Tab("๐Ÿ”ง Configuration & Setup"):
gr.Markdown("## ๐Ÿ”‘ API Keys Configuration")
gr.Markdown("*Enter your API keys below OR set them as environment variables*")
gr.Markdown("**๐Ÿ”’ Privacy:** Your API keys are stored only for your session and are not shared with other users.")
with gr.Row():
with gr.Column():
mistral_key_input = gr.Textbox(
label="Mistral API Key",
placeholder="Enter your Mistral API key...",
type="password",
info="Required for Mistral Large model"
)
sambanova_key_input = gr.Textbox(
label="SambaNova API Key",
placeholder="Enter your SambaNova API key...",
type="password",
info="Required for DeepSeek, Llama, and QwQ models"
)
with gr.Column():
# Add a button to save/update keys
save_keys_btn = gr.Button("๐Ÿ’พ Save API Keys", variant="secondary")
keys_status = gr.Textbox(
label="Keys Status",
value="No API keys configured - using environment variables if available",
interactive=False
)
# Connect the save button
save_keys_btn.click(
update_session_api_keys,
inputs=[mistral_key_input, sambanova_key_input, session_state],
outputs=[keys_status, session_state]
)
model_status_display = gr.Markdown(check_model_status_session())
# Add refresh button for model status
refresh_status_btn = gr.Button("๐Ÿ”„ Refresh Model Status")
refresh_status_btn.click(
check_model_status_session,
inputs=[session_state],
outputs=[model_status_display]
)
gr.Markdown("""
## ๐Ÿ› ๏ธ Setup Instructions
### ๐Ÿš€ Quick Start (Recommended)
1. **Enter API keys above** (they'll be used only for your session)
2. **Click "Save API Keys"**
3. **Start a discussion!**
### ๐Ÿ”‘ Get API Keys:
- **Mistral:** [console.mistral.ai](https://console.mistral.ai)
- **SambaNova:** [cloud.sambanova.ai](https://cloud.sambanova.ai)
### ๐ŸŒ Alternative: Environment Variables
```bash
export MISTRAL_API_KEY=your_key_here
export SAMBANOVA_API_KEY=your_key_here
export MODERATOR_MODEL=mistral
```
### ๐Ÿฆ™ Sambanova Integration
The platform includes **3 Sambanova models**:
- **DeepSeek-R1**: Advanced reasoning model
- **Meta-Llama-3.1-8B**: Fast, efficient discussions
- **QwQ-32B**: Large-scale consensus analysis
### ๐Ÿ” Web Search Agent
Built-in agent using **smolagents** with:
- **DuckDuckGoSearchTool**: Web searches
- **VisitWebpageTool**: Deep content analysis
- **WikipediaTool**: Comprehensive research
- **TinyLlama**: Fast inference for search synthesis
### ๐Ÿ“‹ Dependencies
```bash
pip install gradio requests python-dotenv smolagents gradio-consilium-roundtable wikipedia openai
```
### ๐Ÿ”— MCP Integration
Add to your Claude Desktop config:
```json
{
"mcpServers": {
"consilium": {
"command": "npx",
"args": ["mcp-remote", "http://localhost:7860/gradio_api/mcp/sse"]
}
}
}
```
### ๐Ÿ”’ Privacy & Security
- **Session Isolation**: Each user gets their own private discussion space
- **API Key Protection**: Keys are stored only in your browser session
- **No Global State**: Your discussions are not visible to other users
- **Secure Communication**: All API calls use HTTPS encryption
""")
with gr.Tab("๐Ÿ“š Usage Examples"):
gr.Markdown("""
## ๐ŸŽฏ Example Discussion Topics
### ๐Ÿง  Complex Problem Solving
- "How should we approach the global housing crisis?"
- "What's the best strategy for reducing plastic pollution?"
- "How can we make AI development more democratic?"
### ๐Ÿ’ผ Business Strategy
- "Should our company invest in quantum computing research?"
- "What's the optimal remote work policy for productivity?"
- "How should startups approach AI integration?"
### ๐Ÿ”ฌ Technical Analysis
- "What's the future of web development frameworks?"
- "How should we handle data privacy in the age of AI?"
- "What are the best practices for microservices architecture?"
### ๐ŸŒ Social Issues
- "How can we bridge political divides in society?"
- "What's the most effective approach to education reform?"
- "How should we regulate social media platforms?"
## ๐ŸŽญ Visual Features
**Watch for these visual cues:**
- ๐Ÿค” **Orange pulsing avatars** = AI is thinking
- โœจ **Gold glowing avatars** = AI is responding
- ๐Ÿ’ฌ **Speech bubbles** = Click avatars to see messages
- ๐ŸŽฏ **Center consensus** = Final decision reached
**The roundtable updates in real-time as the discussion progresses!**
## ๐ŸŽฎ Role Assignments Explained
### ๐ŸŽญ Balanced (Recommended)
- **Devil's Advocate**: Challenges assumptions
- **Fact Checker**: Verifies claims and accuracy
- **Synthesizer**: Finds common ground
- **Standard**: Provides balanced analysis
### ๐ŸŽ“ Specialized
- **Domain Expert**: Technical expertise
- **Fact Checker**: Accuracy verification
- **Creative Thinker**: Innovative solutions
- **Synthesizer**: Bridge building
### โš”๏ธ Adversarial
- **Double Devil's Advocate**: Maximum challenge
- **Standard**: Balanced counter-perspective
## ๐Ÿ—ณ๏ธ Decision Protocols
- **Consensus**: Seek agreement among all participants
- **Majority Voting**: Most popular position wins
- **Weighted Voting**: Higher confidence scores matter more
- **Ranked Choice**: Preference-based selection
- **Unanimity**: All must agree completely
## ๐Ÿ”’ Session Isolation
**Each user gets their own private space:**
- โœ… Your discussions are private to you
- โœ… Your API keys are not shared
- โœ… Your conversation history is isolated
- โœ… Multiple users can use the platform simultaneously
**Perfect for teams, research groups, and individual use!**
""")
# Launch configuration
if __name__ == "__main__":
demo.queue(default_concurrency_limit=10)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=False,
mcp_server=True
)