File size: 20,401 Bytes
ce0bf87 6d0f82e ce0bf87 6d0f82e ce0bf87 6d0f82e ce0bf87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
"""
Enhanced Research Agent with Multi-Source Integration
"""
from typing import Dict, List, Any, Optional, Tuple
import re
from collections import Counter
from .base_tool import BaseTool
from .web_search import WebSearchTool
from .wikipedia_search import WikipediaSearchTool
from .arxiv_search import ArxivSearchTool
from .github_search import GitHubSearchTool
from .sec_search import SECSearchTool
class EnhancedResearchAgent:
"""Enhanced research agent with multi-source synthesis and smart routing"""
def __init__(self):
# Initialize all research tools
self.tools = {
'web': WebSearchTool(),
'wikipedia': WikipediaSearchTool(),
'arxiv': ArxivSearchTool(),
'github': GitHubSearchTool(),
'sec': SECSearchTool()
}
# Tool availability status
self.tool_status = {name: True for name in self.tools.keys()}
def search(self, query: str, research_depth: str = "standard") -> str:
"""Main search method with intelligent routing"""
if research_depth == "deep":
return self._deep_multi_source_search(query)
else:
return self._standard_search(query)
def search_wikipedia(self, topic: str) -> str:
"""Wikipedia search method for backward compatibility"""
return self.tools['wikipedia'].search(topic)
def _standard_search(self, query: str) -> str:
"""Standard single-source search with smart routing"""
# Determine best tool for the query
best_tool = self._route_query_to_tool(query)
try:
return self.tools[best_tool].search(query)
except Exception as e:
# Fallback to web search
if best_tool != 'web':
try:
return self.tools['web'].search(query)
except Exception as e2:
return f"**Research for: {query}**\n\nResearch temporarily unavailable: {str(e2)[:100]}..."
else:
return f"**Research for: {query}**\n\nResearch temporarily unavailable: {str(e)[:100]}..."
def _deep_multi_source_search(self, query: str) -> str:
"""Deep research using multiple sources with synthesis"""
results = {}
quality_scores = {}
# Determine which sources to use based on query type
relevant_tools = self._get_relevant_tools(query)
# Collect results from multiple sources
for tool_name in relevant_tools:
try:
result = self.tools[tool_name].search(query)
if result and len(result.strip()) > 50: # Ensure meaningful result
results[tool_name] = result
quality_scores[tool_name] = self.tools[tool_name].score_research_quality(result, tool_name)
except Exception as e:
print(f"Error with {tool_name}: {e}")
continue
if not results:
return f"**Deep Research for: {query}**\n\nNo sources were able to provide results. Please try a different query."
# Synthesize results
return self._synthesize_multi_source_results(query, results, quality_scores)
def _route_query_to_tool(self, query: str) -> str:
"""Intelligently route query to the most appropriate tool"""
query_lower = query.lower()
# Priority routing based on query characteristics
for tool_name, tool in self.tools.items():
if tool.should_use_for_query(query):
# Return first matching tool based on priority order
priority_order = ['arxiv', 'sec', 'github', 'wikipedia', 'web']
if tool_name in priority_order[:3]: # High-priority specialized tools
return tool_name
# Secondary check for explicit indicators
if any(indicator in query_lower for indicator in ['company', 'stock', 'financial', 'revenue']):
return 'sec'
elif any(indicator in query_lower for indicator in ['research', 'study', 'academic', 'paper']):
return 'arxiv'
elif any(indicator in query_lower for indicator in ['technology', 'framework', 'programming']):
return 'github'
elif any(indicator in query_lower for indicator in ['what is', 'definition', 'history']):
return 'wikipedia'
else:
return 'web' # Default fallback
def _get_relevant_tools(self, query: str) -> List[str]:
"""Get list of relevant tools for deep search"""
relevant_tools = []
# Always include web search for current information
relevant_tools.append('web')
# Add specialized tools based on query
for tool_name, tool in self.tools.items():
if tool_name != 'web' and tool.should_use_for_query(query):
relevant_tools.append(tool_name)
# Ensure we don't overwhelm with too many sources
if len(relevant_tools) > 4:
# Prioritize specialized tools
priority_order = ['arxiv', 'sec', 'github', 'wikipedia', 'web']
relevant_tools = [tool for tool in priority_order if tool in relevant_tools][:4]
return relevant_tools
def _synthesize_multi_source_results(self, query: str, results: Dict[str, str], quality_scores: Dict[str, Dict]) -> str:
"""Synthesize results from multiple research sources"""
synthesis = f"**Comprehensive Research Analysis: {query}**\n\n"
# Add source summary
synthesis += f"**Research Sources Used:** {', '.join(results.keys()).replace('_', ' ').title()}\n\n"
# Find key themes and agreements/disagreements
key_findings = self._extract_key_findings(results)
synthesis += self._format_key_findings(key_findings)
# Add individual source results (condensed)
synthesis += "**Detailed Source Results:**\n\n"
# Sort sources by quality score
sorted_sources = sorted(quality_scores.items(), key=lambda x: x[1]['overall'], reverse=True)
for source_name, _ in sorted_sources:
if source_name in results:
source_result = results[source_name]
quality = quality_scores[source_name]
# Condense long results
if len(source_result) > 800:
source_result = source_result[:800] + "...\n[Result truncated for synthesis]"
synthesis += f"**{source_name.replace('_', ' ').title()} (Quality: {quality['overall']:.2f}/1.0):**\n"
synthesis += f"{source_result}\n\n"
# Add research quality assessment
synthesis += self._format_research_quality_assessment(quality_scores)
return synthesis
def _extract_key_findings(self, results: Dict[str, str]) -> Dict[str, List[str]]:
"""Extract key findings and themes from multiple sources"""
findings = {
'agreements': [],
'contradictions': [],
'unique_insights': [],
'data_points': []
}
# Extract key sentences from each source
all_sentences = []
source_sentences = {}
for source, result in results.items():
sentences = self._extract_key_sentences(result)
source_sentences[source] = sentences
all_sentences.extend(sentences)
# Find common themes (simplified approach)
word_counts = Counter()
for sentence in all_sentences:
words = re.findall(r'\b\w{4,}\b', sentence.lower()) # Words 4+ chars
word_counts.update(words)
common_themes = [word for word, count in word_counts.most_common(10) if count > 1]
# Look for numerical data
numbers = re.findall(r'\b\d+(?:\.\d+)?%?\b', ' '.join(all_sentences))
findings['data_points'] = list(set(numbers))[:10] # Top 10 unique numbers
# Simplified agreement detection
if len(source_sentences) > 1:
findings['agreements'] = [f"Multiple sources mention: {theme}" for theme in common_themes[:3]]
return findings
def _extract_key_sentences(self, text: str) -> List[str]:
"""Extract key sentences from research text"""
if not text:
return []
# Split into sentences
sentences = re.split(r'[.!?]+', text)
# Filter for key sentences (containing important indicators)
key_indicators = [
'research shows', 'study found', 'according to', 'data indicates',
'results suggest', 'analysis reveals', 'evidence shows', 'reported that',
'concluded that', 'demonstrated that', 'increased', 'decreased',
'growth', 'decline', 'significant', 'important', 'critical'
]
key_sentences = []
for sentence in sentences:
sentence = sentence.strip()
if (len(sentence) > 30 and
any(indicator in sentence.lower() for indicator in key_indicators)):
key_sentences.append(sentence)
return key_sentences[:5] # Top 5 key sentences
def _format_key_findings(self, findings: Dict[str, List[str]]) -> str:
"""Format key findings summary"""
result = "**Key Research Synthesis:**\n\n"
if findings['agreements']:
result += "**Common Themes:**\n"
for agreement in findings['agreements']:
result += f"• {agreement}\n"
result += "\n"
if findings['data_points']:
result += "**Key Data Points:**\n"
for data in findings['data_points'][:5]:
result += f"• {data}\n"
result += "\n"
if findings['unique_insights']:
result += "**Unique Insights:**\n"
for insight in findings['unique_insights']:
result += f"• {insight}\n"
result += "\n"
return result
def _format_research_quality_assessment(self, quality_scores: Dict[str, Dict]) -> str:
"""Format overall research quality assessment"""
if not quality_scores:
return ""
result = "**Research Quality Assessment:**\n\n"
# Calculate average quality metrics
avg_overall = sum(scores['overall'] for scores in quality_scores.values()) / len(quality_scores)
avg_authority = sum(scores['authority'] for scores in quality_scores.values()) / len(quality_scores)
avg_recency = sum(scores['recency'] for scores in quality_scores.values()) / len(quality_scores)
avg_specificity = sum(scores['specificity'] for scores in quality_scores.values()) / len(quality_scores)
result += f"• Overall Research Quality: {avg_overall:.2f}/1.0\n"
result += f"• Source Authority: {avg_authority:.2f}/1.0\n"
result += f"• Information Recency: {avg_recency:.2f}/1.0\n"
result += f"• Data Specificity: {avg_specificity:.2f}/1.0\n"
result += f"• Sources Consulted: {len(quality_scores)}\n\n"
# Quality interpretation
if avg_overall >= 0.8:
quality_level = "Excellent"
elif avg_overall >= 0.6:
quality_level = "Good"
elif avg_overall >= 0.4:
quality_level = "Moderate"
else:
quality_level = "Limited"
result += f"**Research Reliability: {quality_level}**\n"
if avg_authority >= 0.8:
result += "• High-authority sources with strong credibility\n"
if avg_recency >= 0.7:
result += "• Current and up-to-date information\n"
if avg_specificity >= 0.6:
result += "• Specific data points and quantitative evidence\n"
return result
def generate_research_queries(self, question: str, current_discussion: List[Dict]) -> List[str]:
"""Auto-generate targeted research queries based on discussion gaps"""
# Analyze discussion for gaps
discussion_text = "\n".join([msg.get('text', '') for msg in current_discussion])
# Extract claims that need verification
unsubstantiated_claims = self._find_unsubstantiated_claims(discussion_text)
# Generate specific queries
queries = []
# Add queries for unsubstantiated claims
for claim in unsubstantiated_claims[:3]:
query = self._convert_claim_to_query(claim)
if query:
queries.append(query)
# Add queries for missing quantitative data
if not re.search(r'\d+%', discussion_text):
queries.append(f"{question} statistics data percentages")
# Add current trends query
queries.append(f"{question} 2024 2025 recent developments")
return queries[:3] # Limit to 3 targeted queries
def _find_unsubstantiated_claims(self, discussion_text: str) -> List[str]:
"""Find claims that might need research backing"""
claims = []
# Look for assertion patterns
assertion_patterns = [
r'(?:should|must|will|is|are)\s+[^.]{20,100}',
r'(?:studies show|research indicates|data suggests)\s+[^.]{20,100}',
r'(?:according to|based on)\s+[^.]{20,100}'
]
for pattern in assertion_patterns:
matches = re.findall(pattern, discussion_text, re.IGNORECASE)
claims.extend(matches[:2]) # Limit matches per pattern
return claims
def _convert_claim_to_query(self, claim: str) -> Optional[str]:
"""Convert a claim into a research query"""
if not claim or len(claim) < 10:
return None
# Extract key terms
key_terms = re.findall(r'\b\w{4,}\b', claim.lower())
if len(key_terms) < 2:
return None
# Create query from key terms
query_terms = key_terms[:4] # Use first 4 meaningful terms
return " ".join(query_terms)
def prioritize_research_needs(self, expert_positions: List[Dict], question: str) -> List[str]:
"""Identify and prioritize research that could resolve expert conflicts"""
# Extract expert claims
expert_claims = {}
for position in expert_positions:
speaker = position.get('speaker', 'Unknown')
text = position.get('text', '')
expert_claims[speaker] = self._extract_key_claims(text)
# Find disagreements
disagreements = self._find_expert_disagreements(expert_claims)
# Generate research priorities
priorities = []
for disagreement in disagreements[:3]:
# Create research query to resolve disagreement
query = f"{question} {disagreement['topic']} evidence data"
priorities.append(query)
return priorities
def _extract_key_claims(self, expert_text: str) -> List[str]:
"""Extract key factual claims from expert response"""
if not expert_text:
return []
sentences = expert_text.split('.')
claims = []
for sentence in sentences:
sentence = sentence.strip()
if (len(sentence) > 20 and
any(indicator in sentence.lower() for indicator in [
'should', 'will', 'is', 'are', 'must', 'can', 'would', 'could'
])):
claims.append(sentence)
return claims[:3] # Top 3 claims
def _find_expert_disagreements(self, expert_claims: Dict[str, List[str]]) -> List[Dict]:
"""Identify areas where experts disagree"""
disagreements = []
experts = list(expert_claims.keys())
for i, expert1 in enumerate(experts):
for expert2 in experts[i+1:]:
claims1 = expert_claims[expert1]
claims2 = expert_claims[expert2]
conflicts = self._find_conflicting_claims(claims1, claims2)
if conflicts:
disagreements.append({
'experts': [expert1, expert2],
'topic': self._extract_conflict_topic(conflicts[0]),
'conflicts': conflicts[:1] # Just the main conflict
})
return disagreements
def _find_conflicting_claims(self, claims1: List[str], claims2: List[str]) -> List[str]:
"""Identify potentially conflicting claims (simplified)"""
conflicts = []
# Simple opposing sentiment detection
opposing_pairs = [
('should', 'should not'), ('will', 'will not'), ('is', 'is not'),
('increase', 'decrease'), ('better', 'worse'), ('yes', 'no'),
('support', 'oppose'), ('benefit', 'harm'), ('effective', 'ineffective')
]
for claim1 in claims1:
for claim2 in claims2:
for pos, neg in opposing_pairs:
if pos in claim1.lower() and neg in claim2.lower():
conflicts.append(f"{claim1} vs {claim2}")
elif neg in claim1.lower() and pos in claim2.lower():
conflicts.append(f"{claim1} vs {claim2}")
return conflicts
def _extract_conflict_topic(self, conflict: str) -> str:
"""Extract the main topic from a conflict description"""
# Simple extraction of key terms
words = re.findall(r'\b\w{4,}\b', conflict.lower())
# Filter out common words
stopwords = {'should', 'will', 'would', 'could', 'this', 'that', 'with', 'from', 'they', 'them'}
topic_words = [word for word in words if word not in stopwords]
return " ".join(topic_words[:3])
def suggest_research_follow_ups(self, discussion_log: List[Dict], question: str) -> List[str]:
"""Suggest additional research questions based on discussion patterns"""
# Get recent discussion
latest_messages = discussion_log[-6:] if len(discussion_log) > 6 else discussion_log
recent_text = "\n".join([msg.get('content', '') for msg in latest_messages])
follow_ups = []
# Look for unverified statistics
if re.search(r'\d+%', recent_text):
follow_ups.append(f"{question} statistics verification current data")
# Look for trend mentions
trend_keywords = ['trend', 'growing', 'increasing', 'declining', 'emerging']
if any(keyword in recent_text.lower() for keyword in trend_keywords):
follow_ups.append(f"{question} current trends 2024 2025")
# Look for example mentions
if 'example' in recent_text.lower() or 'case study' in recent_text.lower():
follow_ups.append(f"{question} case studies examples evidence")
return follow_ups[:3]
def get_tool_status(self) -> Dict[str, bool]:
"""Get status of all research tools"""
return {
name: self.tool_status.get(name, True)
for name in self.tools.keys()
}
def test_tool_connections(self) -> Dict[str, str]:
"""Test all research tool connections"""
results = {}
for name, tool in self.tools.items():
try:
# Simple test query
test_result = tool.search("test", max_results=1)
if test_result and len(test_result) > 20:
results[name] = "✅ Working"
self.tool_status[name] = True
else:
results[name] = "⚠️ Limited response"
self.tool_status[name] = False
except Exception as e:
results[name] = f"❌ Error: {str(e)[:50]}..."
self.tool_status[name] = False
return results |