Update app.py
Browse files
app.py
CHANGED
@@ -851,6 +851,287 @@ def one_way_anova(
|
|
851 |
except Exception as e:
|
852 |
return {"error": f"Unexpected error in one-way ANOVA: {str(e)}"}
|
853 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
854 |
def chi_square_test(
|
855 |
dataframe: Optional[pd.DataFrame] = None,
|
856 |
observed_str: Optional[str] = None,
|
@@ -1765,6 +2046,276 @@ def create_anova_tab():
|
|
1765 |
show_api=False
|
1766 |
)
|
1767 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1768 |
def create_chi_square_tab():
|
1769 |
"""Create a complete chi-square goodness of fit test tab with all components and handlers."""
|
1770 |
|
@@ -2125,9 +2676,9 @@ def create_t_test_interface():
|
|
2125 |
description="**t-test between paired groups**"
|
2126 |
)
|
2127 |
|
2128 |
-
# Create paired t-test tab
|
2129 |
-
anova_components = create_anova_tab()
|
2130 |
one_sample_components = create_one_sample_t_test_tab()
|
|
|
|
|
2131 |
chi_square_components = create_chi_square_tab()
|
2132 |
corr_components = create_correlation_tab()
|
2133 |
|
|
|
851 |
except Exception as e:
|
852 |
return {"error": f"Unexpected error in one-way ANOVA: {str(e)}"}
|
853 |
|
854 |
+
def multi_way_anova(
|
855 |
+
dataframe: Optional[pd.DataFrame] = None,
|
856 |
+
dependent_var: Optional[str] = None,
|
857 |
+
factors: Optional[str] = None,
|
858 |
+
alpha: float = 0.05,
|
859 |
+
effect_thresholds: str = "0.01,0.06,0.14",
|
860 |
+
include_interactions: bool = True,
|
861 |
+
max_interaction_order: Optional[int] = None,
|
862 |
+
sum_squares_type: int = 2
|
863 |
+
) -> Dict[str, Any]:
|
864 |
+
"""
|
865 |
+
Accepts multiple categorical factors and performs Multi-Way ANOVA to determine whether there are
|
866 |
+
statistically significant differences between group means when multiple factors are involved simultaneously.
|
867 |
+
Multi-way ANOVA extends the one-way ANOVA framework to handle complex experimental designs with multiple
|
868 |
+
categorical independent variables (factors), each with two or more levels. Unlike one-way ANOVA which tests
|
869 |
+
a single factor, multi-way ANOVA can simultaneously test: (1) main effects of each individual factor,
|
870 |
+
(2) interaction effects between factors, and (3) higher-order interactions. The test uses F-statistics to
|
871 |
+
compare variance between groups to variance within groups for each effect. Eta-squared (η²) measures effect
|
872 |
+
size as the proportion of total variance explained by each factor and interaction, with interpretation:
|
873 |
+
η² < 0.01 = negligible, 0.01-0.06 = small, 0.06-0.14 = medium, >0.14 = large (custom thresholds may be used).
|
874 |
+
EXAMPLE USE CASES: 2-way ANOVA for treatment × gender effects on blood pressure, 3-way ANOVA for teaching
|
875 |
+
method × school type × student age on test scores, 4-way ANOVA for drug × dose × gender × age effects on recovery.
|
876 |
+
|
877 |
+
Args:
|
878 |
+
dataframe (Optional[pd.DataFrame]): DataFrame containing the experimental data with factors as columns
|
879 |
+
and the dependent variable. All factors must be categorical.
|
880 |
+
If provided, dependent_var and factors parameters are required.
|
881 |
+
dependent_var (Optional[str]): Name of the dependent (outcome) variable column in the DataFrame.
|
882 |
+
Must be a continuous numeric variable.
|
883 |
+
Example: "test_score", "recovery_time", "blood_pressure"
|
884 |
+
factors (Optional[str]): Comma-separated string of factor column names from the DataFrame.
|
885 |
+
Format: "factor1,factor2,factor3"
|
886 |
+
Example: "treatment,gender,age_group" for a 3-way ANOVA
|
887 |
+
Each factor must be categorical with 2 or more levels.
|
888 |
+
alpha (float): Significance level for the test (probability of Type I error). Reject null hypothesis if p_value below this threshold.
|
889 |
+
Common values: 0.05 (5%), 0.01 (1%), 0.10 (10%)
|
890 |
+
effect_thresholds (str): Three comma-separated values defining eta-squared effect size boundaries.
|
891 |
+
Format: "small_threshold,medium_threshold,large_threshold"
|
892 |
+
Default "0.01,0.06,0.14" means: <0.01=negligible, 0.01-0.06=small, 0.06-0.14=medium, >0.14=large
|
893 |
+
These follow Cohen's conventions for eta-squared interpretation.
|
894 |
+
include_interactions (bool): Whether to include interaction terms in the model.
|
895 |
+
True (default): Tests main effects AND interactions
|
896 |
+
False: Tests only main effects (additive model)
|
897 |
+
max_interaction_order (Optional[int]): Maximum order of interactions to include in the model.
|
898 |
+
If None, includes all possible interactions up to the number of factors.
|
899 |
+
Example: For 4 factors, setting to 2 includes only 2-way interactions.
|
900 |
+
Useful for simplifying complex models with many factors.
|
901 |
+
sum_squares_type (int): Type of sum of squares calculation for the ANOVA table.
|
902 |
+
Type 1: Sequential (depends on order of factors)
|
903 |
+
Type 2: Marginal (recommended for balanced designs, default)
|
904 |
+
Type 3: Partial (recommended for unbalanced designs)
|
905 |
+
|
906 |
+
Returns:
|
907 |
+
dict: Comprehensive test results with the following keys:
|
908 |
+
- test_type (str): Description of the multi-way ANOVA performed (e.g., "3-way ANOVA with interactions")
|
909 |
+
- anova_table (pd.DataFrame): Complete ANOVA table with sum of squares, F-statistics, p-values, etc.
|
910 |
+
- significant_effects (List[str]): List of statistically significant main effects and interactions
|
911 |
+
- effect_sizes (Dict[str, float]): Eta-squared values for each effect measuring proportion of variance explained
|
912 |
+
- effect_interpretations (Dict[str, str]): Categorical interpretation of each effect size ("negligible", "small", "medium", "large")
|
913 |
+
- factor_summaries (Dict[str, dict]): Descriptive statistics for each factor level
|
914 |
+
- model_summary (dict): Overall model statistics (R², F-statistic, AIC, BIC, etc.)
|
915 |
+
- formula_used (str): The statsmodels formula string used for the analysis
|
916 |
+
- design_summary (dict): Information about the experimental design (balanced/unbalanced, sample sizes)
|
917 |
+
- alpha (float): Echo of significance level used
|
918 |
+
- factors_analyzed (List[str]): Echo of factors included in the analysis
|
919 |
+
- sum_squares_type (int): Echo of sum of squares type used
|
920 |
+
- effect_thresholds (List[float]): Echo of effect size thresholds used
|
921 |
+
"""
|
922 |
+
try:
|
923 |
+
# Parse effect size thresholds
|
924 |
+
try:
|
925 |
+
thresholds = [float(x.strip()) for x in effect_thresholds.split(',')]
|
926 |
+
if len(thresholds) != 3:
|
927 |
+
return {"error": "Effect thresholds must be three comma-separated numbers (small,medium,large)"}
|
928 |
+
except:
|
929 |
+
return {"error": "Invalid effect thresholds format. Use 'small,medium,large' (e.g., '0.01,0.06,0.14')"}
|
930 |
+
|
931 |
+
# Validate inputs
|
932 |
+
if dataframe is None or dataframe.empty:
|
933 |
+
return {"error": "DataFrame cannot be None or empty"}
|
934 |
+
|
935 |
+
if not dependent_var:
|
936 |
+
return {"error": "Dependent variable name is required"}
|
937 |
+
|
938 |
+
if dependent_var not in dataframe.columns:
|
939 |
+
return {"error": f"Dependent variable '{dependent_var}' not found in DataFrame columns"}
|
940 |
+
|
941 |
+
if not factors:
|
942 |
+
return {"error": "Factor names are required. Provide as comma-separated string (e.g., 'factor1,factor2,factor3')"}
|
943 |
+
|
944 |
+
# Parse factors
|
945 |
+
try:
|
946 |
+
factor_list = [f.strip() for f in factors.split(',') if f.strip()]
|
947 |
+
if len(factor_list) < 2:
|
948 |
+
return {"error": "At least 2 factors are required for multi-way ANOVA"}
|
949 |
+
except:
|
950 |
+
return {"error": "Invalid factors format. Use comma-separated factor names (e.g., 'treatment,gender,age_group')"}
|
951 |
+
|
952 |
+
# Check factors exist in DataFrame
|
953 |
+
missing_factors = [f for f in factor_list if f not in dataframe.columns]
|
954 |
+
if missing_factors:
|
955 |
+
return {"error": f"Factors not found in DataFrame: {missing_factors}"}
|
956 |
+
|
957 |
+
# Validate sum of squares type
|
958 |
+
if sum_squares_type not in [1, 2, 3]:
|
959 |
+
return {"error": "sum_squares_type must be 1, 2, or 3"}
|
960 |
+
|
961 |
+
# Clean and prepare the data
|
962 |
+
analysis_columns = [dependent_var] + factor_list
|
963 |
+
analysis_df = dataframe[analysis_columns].copy()
|
964 |
+
|
965 |
+
# Remove rows with missing values
|
966 |
+
initial_rows = len(analysis_df)
|
967 |
+
analysis_df = analysis_df.dropna()
|
968 |
+
final_rows = len(analysis_df)
|
969 |
+
|
970 |
+
if final_rows < initial_rows * 0.5:
|
971 |
+
return {"error": f"Too much missing data: only {final_rows} out of {initial_rows} rows usable"}
|
972 |
+
|
973 |
+
if final_rows < 20:
|
974 |
+
return {"error": f"Insufficient data after removing missing values: {final_rows} rows remaining (minimum 20 required)"}
|
975 |
+
|
976 |
+
# Validate dependent variable is numeric
|
977 |
+
try:
|
978 |
+
analysis_df[dependent_var] = pd.to_numeric(analysis_df[dependent_var])
|
979 |
+
except:
|
980 |
+
return {"error": f"Dependent variable '{dependent_var}' must be numeric"}
|
981 |
+
|
982 |
+
# Ensure factors are categorical and check levels
|
983 |
+
factor_level_counts = {}
|
984 |
+
for factor in factor_list:
|
985 |
+
analysis_df[factor] = analysis_df[factor].astype('category')
|
986 |
+
unique_levels = len(analysis_df[factor].cat.categories)
|
987 |
+
factor_level_counts[factor] = unique_levels
|
988 |
+
|
989 |
+
if unique_levels < 2:
|
990 |
+
return {"error": f"Factor '{factor}' must have at least 2 levels. Found {unique_levels} level(s)"}
|
991 |
+
|
992 |
+
if unique_levels > 20:
|
993 |
+
return {"error": f"Factor '{factor}' has too many levels ({unique_levels}). Consider combining levels or using a different analysis method"}
|
994 |
+
|
995 |
+
# Check for sufficient observations per factor combination
|
996 |
+
try:
|
997 |
+
cell_counts = analysis_df.groupby(factor_list).size()
|
998 |
+
min_cell_size = cell_counts.min()
|
999 |
+
empty_cells = (cell_counts == 0).sum()
|
1000 |
+
|
1001 |
+
if min_cell_size < 2:
|
1002 |
+
return {"error": f"Some factor combinations have fewer than 2 observations. Minimum cell size: {min_cell_size}"}
|
1003 |
+
|
1004 |
+
if empty_cells > 0:
|
1005 |
+
return {"error": f"Missing data: {empty_cells} factor combinations have no observations"}
|
1006 |
+
|
1007 |
+
except Exception as e:
|
1008 |
+
return {"error": f"Error checking experimental design: {str(e)}"}
|
1009 |
+
|
1010 |
+
# Build formula components
|
1011 |
+
formula_terms = []
|
1012 |
+
|
1013 |
+
# Add main effects (always included)
|
1014 |
+
for factor in factor_list:
|
1015 |
+
formula_terms.append(f"C({factor})")
|
1016 |
+
|
1017 |
+
# Add interaction terms if requested
|
1018 |
+
if include_interactions and len(factor_list) > 1:
|
1019 |
+
max_order = max_interaction_order if max_interaction_order is not None else len(factor_list)
|
1020 |
+
max_order = min(max_order, len(factor_list)) # Don't exceed number of factors
|
1021 |
+
|
1022 |
+
# Generate all interaction combinations
|
1023 |
+
for order in range(2, max_order + 1):
|
1024 |
+
for combination in itertools.combinations(factor_list, order):
|
1025 |
+
interaction_term = ":".join([f"C({factor})" for factor in combination])
|
1026 |
+
formula_terms.append(interaction_term)
|
1027 |
+
|
1028 |
+
# Build the complete formula
|
1029 |
+
formula = f"{dependent_var} ~ " + " + ".join(formula_terms)
|
1030 |
+
|
1031 |
+
# Fit the model
|
1032 |
+
try:
|
1033 |
+
model = ols(formula, data=analysis_df).fit()
|
1034 |
+
except Exception as e:
|
1035 |
+
return {"error": f"Model fitting failed: {str(e)}. This may indicate perfect multicollinearity or insufficient data variation"}
|
1036 |
+
|
1037 |
+
# Generate ANOVA table
|
1038 |
+
try:
|
1039 |
+
anova_table = sm.stats.anova_lm(model, typ=sum_squares_type)
|
1040 |
+
except Exception as e:
|
1041 |
+
return {"error": f"ANOVA table generation failed: {str(e)}"}
|
1042 |
+
|
1043 |
+
# Calculate effect sizes (eta-squared)
|
1044 |
+
effect_sizes = {}
|
1045 |
+
effect_interpretations = {}
|
1046 |
+
total_ss = anova_table['sum_sq'].sum()
|
1047 |
+
|
1048 |
+
for index, row in anova_table.iterrows():
|
1049 |
+
if index != 'Residual':
|
1050 |
+
eta_squared = row['sum_sq'] / total_ss
|
1051 |
+
effect_sizes[index] = eta_squared
|
1052 |
+
|
1053 |
+
# Interpret effect size
|
1054 |
+
small_threshold, medium_threshold, large_threshold = thresholds
|
1055 |
+
if eta_squared < small_threshold:
|
1056 |
+
effect_interpretations[index] = "negligible"
|
1057 |
+
elif eta_squared < medium_threshold:
|
1058 |
+
effect_interpretations[index] = "small"
|
1059 |
+
elif eta_squared < large_threshold:
|
1060 |
+
effect_interpretations[index] = "medium"
|
1061 |
+
else:
|
1062 |
+
effect_interpretations[index] = "large"
|
1063 |
+
|
1064 |
+
# Identify significant effects
|
1065 |
+
significant_effects = []
|
1066 |
+
for index, row in anova_table.iterrows():
|
1067 |
+
if index != 'Residual' and row['PR(>F)'] < alpha:
|
1068 |
+
significant_effects.append(index)
|
1069 |
+
|
1070 |
+
# Calculate factor summaries
|
1071 |
+
factor_summaries = {}
|
1072 |
+
for factor in factor_list:
|
1073 |
+
factor_stats = analysis_df.groupby(factor)[dependent_var].agg(['mean', 'std', 'count']).round(4)
|
1074 |
+
factor_summaries[factor] = factor_stats.to_dict('index')
|
1075 |
+
|
1076 |
+
# Model summary statistics
|
1077 |
+
model_summary = {
|
1078 |
+
"r_squared": model.rsquared,
|
1079 |
+
"adj_r_squared": model.rsquared_adj,
|
1080 |
+
"f_statistic": model.fvalue,
|
1081 |
+
"f_pvalue": model.f_pvalue,
|
1082 |
+
"aic": model.aic,
|
1083 |
+
"bic": model.bic,
|
1084 |
+
"df_model": model.df_model,
|
1085 |
+
"df_resid": model.df_resid,
|
1086 |
+
"n_observations": int(model.nobs),
|
1087 |
+
"mse_resid": model.mse_resid
|
1088 |
+
}
|
1089 |
+
|
1090 |
+
# Design summary
|
1091 |
+
total_combinations = np.prod(list(factor_level_counts.values()))
|
1092 |
+
observed_combinations = len(cell_counts)
|
1093 |
+
balanced = len(cell_counts.unique()) == 1 # All cells have same count
|
1094 |
+
|
1095 |
+
design_summary = {
|
1096 |
+
"n_factors": len(factor_list),
|
1097 |
+
"factor_levels": factor_level_counts,
|
1098 |
+
"total_possible_combinations": total_combinations,
|
1099 |
+
"observed_combinations": observed_combinations,
|
1100 |
+
"is_balanced": balanced,
|
1101 |
+
"min_cell_size": int(min_cell_size),
|
1102 |
+
"max_cell_size": int(cell_counts.max()),
|
1103 |
+
"mean_cell_size": round(cell_counts.mean(), 2)
|
1104 |
+
}
|
1105 |
+
|
1106 |
+
# Determine test description
|
1107 |
+
n_factors = len(factor_list)
|
1108 |
+
test_description = f"{n_factors}-way ANOVA"
|
1109 |
+
|
1110 |
+
if include_interactions:
|
1111 |
+
max_order_desc = max_interaction_order if max_interaction_order else n_factors
|
1112 |
+
test_description += f" with interactions (up to {max_order_desc}-way)"
|
1113 |
+
else:
|
1114 |
+
test_description += " (main effects only)"
|
1115 |
+
|
1116 |
+
return {
|
1117 |
+
"test_type": test_description,
|
1118 |
+
"anova_table": anova_table,
|
1119 |
+
"significant_effects": significant_effects,
|
1120 |
+
"effect_sizes": effect_sizes,
|
1121 |
+
"effect_interpretations": effect_interpretations,
|
1122 |
+
"factor_summaries": factor_summaries,
|
1123 |
+
"model_summary": model_summary,
|
1124 |
+
"formula_used": formula,
|
1125 |
+
"design_summary": design_summary,
|
1126 |
+
"alpha": alpha,
|
1127 |
+
"factors_analyzed": factor_list,
|
1128 |
+
"sum_squares_type": sum_squares_type,
|
1129 |
+
"effect_thresholds": thresholds
|
1130 |
+
}
|
1131 |
+
|
1132 |
+
except Exception as e:
|
1133 |
+
return {"error": f"Unexpected error in multi-way ANOVA: {str(e)}"}
|
1134 |
+
|
1135 |
def chi_square_test(
|
1136 |
dataframe: Optional[pd.DataFrame] = None,
|
1137 |
observed_str: Optional[str] = None,
|
|
|
2046 |
show_api=False
|
2047 |
)
|
2048 |
|
2049 |
+
def create_multi_way_anova_tab():
|
2050 |
+
"""Create a complete multi-way ANOVA tab with all components and handlers."""
|
2051 |
+
|
2052 |
+
with gr.TabItem("Multi-Way ANOVA"):
|
2053 |
+
gr.Markdown("**Compare means across multiple categorical factors simultaneously**")
|
2054 |
+
|
2055 |
+
# Input method selector
|
2056 |
+
input_method = gr.Radio(
|
2057 |
+
choices=["File Upload"],
|
2058 |
+
value="File Upload",
|
2059 |
+
label="Input Method",
|
2060 |
+
info="Multi-way ANOVA requires structured data - file upload recommended"
|
2061 |
+
)
|
2062 |
+
|
2063 |
+
# File upload input section
|
2064 |
+
with gr.Group(visible=True) as file_section:
|
2065 |
+
gr.Markdown("### File Upload")
|
2066 |
+
gr.Markdown("*Upload CSV or Excel file with dependent variable and multiple categorical factors*")
|
2067 |
+
|
2068 |
+
with gr.Row():
|
2069 |
+
file_upload = gr.File(
|
2070 |
+
label="Upload CSV/Excel File",
|
2071 |
+
file_types=[".csv", ".xlsx", ".xls"],
|
2072 |
+
type="filepath"
|
2073 |
+
)
|
2074 |
+
has_header = gr.Checkbox(
|
2075 |
+
label="File has header row",
|
2076 |
+
value=True,
|
2077 |
+
info="Check if first row contains column names"
|
2078 |
+
)
|
2079 |
+
|
2080 |
+
# Display loaded data preview
|
2081 |
+
data_preview = gr.Dataframe(
|
2082 |
+
label="Data Preview",
|
2083 |
+
interactive=False,
|
2084 |
+
row_count=10
|
2085 |
+
)
|
2086 |
+
|
2087 |
+
# Variable specification
|
2088 |
+
gr.Markdown("### Variable Specification")
|
2089 |
+
with gr.Row():
|
2090 |
+
dependent_var = gr.Dropdown(
|
2091 |
+
label="Dependent Variable",
|
2092 |
+
info="Select the continuous outcome variable",
|
2093 |
+
interactive=True
|
2094 |
+
)
|
2095 |
+
factors = gr.Textbox(
|
2096 |
+
label="Factors (comma-separated)",
|
2097 |
+
placeholder="treatment,gender,age_group",
|
2098 |
+
info="Enter factor column names separated by commas",
|
2099 |
+
lines=2
|
2100 |
+
)
|
2101 |
+
|
2102 |
+
# Advanced options
|
2103 |
+
gr.Markdown("### Analysis Options")
|
2104 |
+
with gr.Row():
|
2105 |
+
include_interactions = gr.Checkbox(
|
2106 |
+
label="Include Interactions",
|
2107 |
+
value=True,
|
2108 |
+
info="Test for interaction effects between factors"
|
2109 |
+
)
|
2110 |
+
max_interaction_order = gr.Number(
|
2111 |
+
label="Max Interaction Order",
|
2112 |
+
value=None,
|
2113 |
+
minimum=2,
|
2114 |
+
step=1,
|
2115 |
+
info="Maximum interaction order (leave empty for all interactions)"
|
2116 |
+
)
|
2117 |
+
|
2118 |
+
with gr.Row():
|
2119 |
+
sum_squares_type = gr.Dropdown(
|
2120 |
+
choices=[1, 2, 3],
|
2121 |
+
value=2,
|
2122 |
+
label="Sum of Squares Type",
|
2123 |
+
info="Type 2 for balanced, Type 3 for unbalanced designs"
|
2124 |
+
)
|
2125 |
+
alpha = gr.Number(
|
2126 |
+
value=0.05,
|
2127 |
+
minimum=0,
|
2128 |
+
maximum=1,
|
2129 |
+
step=0.01,
|
2130 |
+
label="Significance Level (α)",
|
2131 |
+
info="Probability threshold for statistical significance"
|
2132 |
+
)
|
2133 |
+
|
2134 |
+
with gr.Row():
|
2135 |
+
effect_thresholds = gr.Textbox(
|
2136 |
+
value="0.01,0.06,0.14",
|
2137 |
+
label="Effect Size Thresholds",
|
2138 |
+
info="Eta-squared boundaries: small,medium,large"
|
2139 |
+
)
|
2140 |
+
|
2141 |
+
# Action buttons
|
2142 |
+
with gr.Row():
|
2143 |
+
run_button = gr.Button("Run Multi-Way ANOVA", variant="primary", scale=1)
|
2144 |
+
clear_button = gr.Button("Clear All", variant="secondary", scale=1)
|
2145 |
+
|
2146 |
+
# Output display
|
2147 |
+
output = gr.JSON(label="Multi-Way ANOVA Results")
|
2148 |
+
|
2149 |
+
# Information section
|
2150 |
+
with gr.Accordion("Multi-Way ANOVA Information", open=False):
|
2151 |
+
gr.Markdown("""
|
2152 |
+
### What is Multi-Way ANOVA?
|
2153 |
+
|
2154 |
+
Multi-way ANOVA extends one-way ANOVA to handle multiple categorical factors simultaneously:
|
2155 |
+
|
2156 |
+
**Main Effects**: How each factor independently affects the outcome
|
2157 |
+
**Interaction Effects**: How factors work together (non-additively)
|
2158 |
+
|
2159 |
+
### Example Designs:
|
2160 |
+
- **2-way**: Treatment (A,B,C) × Gender (Male,Female) → 6 combinations
|
2161 |
+
- **3-way**: Drug (A,B) × Dose (Low,High) × Age (Young,Old) → 8 combinations
|
2162 |
+
- **4-way**: Method (A,B) × School (Public,Private) × Gender (M,F) × Grade (1st,2nd) → 16 combinations
|
2163 |
+
|
2164 |
+
### Requirements:
|
2165 |
+
- All factors must be categorical (not continuous)
|
2166 |
+
- Dependent variable must be continuous
|
2167 |
+
- At least 2 observations per factor combination
|
2168 |
+
- Independence, normality, and equal variances assumptions
|
2169 |
+
""")
|
2170 |
+
|
2171 |
+
# Example data section
|
2172 |
+
with gr.Row():
|
2173 |
+
gr.Markdown("### Quick Examples")
|
2174 |
+
example_button = gr.Button("Load Example Data", variant="outline")
|
2175 |
+
|
2176 |
+
# State management
|
2177 |
+
loaded_dataframe = gr.State(value=None)
|
2178 |
+
|
2179 |
+
# Helper function to load and preview file data
|
2180 |
+
def load_multi_way_file(file_path, has_header_flag):
|
2181 |
+
if file_path is None:
|
2182 |
+
return None, None, []
|
2183 |
+
|
2184 |
+
try:
|
2185 |
+
# Determine header parameter
|
2186 |
+
header_param = 0 if has_header_flag else None
|
2187 |
+
|
2188 |
+
if file_path.endswith('.csv'):
|
2189 |
+
df = pd.read_csv(file_path, header=header_param)
|
2190 |
+
elif file_path.endswith(('.xlsx', '.xls')):
|
2191 |
+
df = pd.read_excel(file_path, header=header_param)
|
2192 |
+
else:
|
2193 |
+
return None, pd.DataFrame({'Error': ['Unsupported file format']}), []
|
2194 |
+
|
2195 |
+
# Set column names if no header
|
2196 |
+
if not has_header_flag:
|
2197 |
+
df.columns = [f'Column_{i+1}' for i in range(len(df.columns))]
|
2198 |
+
|
2199 |
+
# Get column options for dropdown
|
2200 |
+
column_options = list(df.columns)
|
2201 |
+
|
2202 |
+
# Return dataframe, preview, and column options
|
2203 |
+
preview = df.head(15)
|
2204 |
+
return df, preview, column_options
|
2205 |
+
|
2206 |
+
except Exception as e:
|
2207 |
+
error_df = pd.DataFrame({'Error': [f"Failed to load file: {str(e)}"]})
|
2208 |
+
return None, error_df, []
|
2209 |
+
|
2210 |
+
# Clear form function
|
2211 |
+
def clear_multi_way():
|
2212 |
+
return (
|
2213 |
+
None, # loaded_dataframe
|
2214 |
+
None, # data_preview
|
2215 |
+
[], # dependent_var choices
|
2216 |
+
None, # dependent_var value
|
2217 |
+
"", # factors
|
2218 |
+
True, # include_interactions
|
2219 |
+
None, # max_interaction_order
|
2220 |
+
2, # sum_squares_type
|
2221 |
+
0.05, # alpha
|
2222 |
+
"0.01,0.06,0.14", # effect_thresholds
|
2223 |
+
{} # output
|
2224 |
+
)
|
2225 |
+
|
2226 |
+
# Example data function
|
2227 |
+
def load_multi_way_example():
|
2228 |
+
# Create example 3-way ANOVA data
|
2229 |
+
np.random.seed(42)
|
2230 |
+
|
2231 |
+
treatments = ['Control', 'Treatment_A', 'Treatment_B']
|
2232 |
+
genders = ['Male', 'Female']
|
2233 |
+
ages = ['Young', 'Old']
|
2234 |
+
|
2235 |
+
data = []
|
2236 |
+
for treatment in treatments:
|
2237 |
+
for gender in genders:
|
2238 |
+
for age in ages:
|
2239 |
+
# Generate scores with different effects
|
2240 |
+
base_score = 50
|
2241 |
+
treatment_effect = {'Control': 0, 'Treatment_A': 8, 'Treatment_B': 12}[treatment]
|
2242 |
+
gender_effect = {'Male': 3, 'Female': -3}[gender]
|
2243 |
+
age_effect = {'Young': 5, 'Old': -5}[age]
|
2244 |
+
|
2245 |
+
# Add interaction: Treatment_B works better for older patients
|
2246 |
+
interaction_effect = 0
|
2247 |
+
if treatment == 'Treatment_B' and age == 'Old':
|
2248 |
+
interaction_effect = 6
|
2249 |
+
|
2250 |
+
n_per_cell = 15
|
2251 |
+
mean_score = base_score + treatment_effect + gender_effect + age_effect + interaction_effect
|
2252 |
+
scores = np.random.normal(mean_score, 6, n_per_cell)
|
2253 |
+
|
2254 |
+
for score in scores:
|
2255 |
+
data.append({
|
2256 |
+
'test_score': round(score, 2),
|
2257 |
+
'treatment': treatment,
|
2258 |
+
'gender': gender,
|
2259 |
+
'age_group': age
|
2260 |
+
})
|
2261 |
+
|
2262 |
+
df = pd.DataFrame(data)
|
2263 |
+
preview = df.head(15)
|
2264 |
+
column_options = list(df.columns)
|
2265 |
+
|
2266 |
+
return df, preview, column_options, 'test_score', 'treatment,gender,age_group'
|
2267 |
+
|
2268 |
+
# EVENT HANDLERS
|
2269 |
+
|
2270 |
+
# File upload handlers
|
2271 |
+
file_upload.change(
|
2272 |
+
fn=load_multi_way_file,
|
2273 |
+
inputs=[file_upload, has_header],
|
2274 |
+
outputs=[loaded_dataframe, data_preview, dependent_var],
|
2275 |
+
show_api=False
|
2276 |
+
)
|
2277 |
+
|
2278 |
+
has_header.change(
|
2279 |
+
fn=load_multi_way_file,
|
2280 |
+
inputs=[file_upload, has_header],
|
2281 |
+
outputs=[loaded_dataframe, data_preview, dependent_var],
|
2282 |
+
show_api=False
|
2283 |
+
)
|
2284 |
+
|
2285 |
+
# MAIN STATISTICAL FUNCTION CALL - Exposed to MCP!
|
2286 |
+
run_button.click(
|
2287 |
+
fn=multi_way_anova,
|
2288 |
+
inputs=[
|
2289 |
+
loaded_dataframe, # dataframe
|
2290 |
+
dependent_var, # dependent_var
|
2291 |
+
factors, # factors
|
2292 |
+
alpha, # alpha
|
2293 |
+
effect_thresholds, # effect_thresholds
|
2294 |
+
include_interactions, # include_interactions
|
2295 |
+
max_interaction_order, # max_interaction_order
|
2296 |
+
sum_squares_type # sum_squares_type
|
2297 |
+
],
|
2298 |
+
outputs=output
|
2299 |
+
)
|
2300 |
+
|
2301 |
+
# Clear form handler
|
2302 |
+
clear_button.click(
|
2303 |
+
fn=clear_multi_way,
|
2304 |
+
outputs=[
|
2305 |
+
loaded_dataframe, data_preview, dependent_var, dependent_var,
|
2306 |
+
factors, include_interactions, max_interaction_order,
|
2307 |
+
sum_squares_type, alpha, effect_thresholds, output
|
2308 |
+
],
|
2309 |
+
show_api=False
|
2310 |
+
)
|
2311 |
+
|
2312 |
+
# Example data handler
|
2313 |
+
example_button.click(
|
2314 |
+
fn=load_multi_way_example,
|
2315 |
+
outputs=[loaded_dataframe, data_preview, dependent_var, dependent_var, factors],
|
2316 |
+
show_api=False
|
2317 |
+
)
|
2318 |
+
|
2319 |
def create_chi_square_tab():
|
2320 |
"""Create a complete chi-square goodness of fit test tab with all components and handlers."""
|
2321 |
|
|
|
2676 |
description="**t-test between paired groups**"
|
2677 |
)
|
2678 |
|
|
|
|
|
2679 |
one_sample_components = create_one_sample_t_test_tab()
|
2680 |
+
anova_components = create_anova_tab()
|
2681 |
+
manova_components = create_multi_way_anova_tab()
|
2682 |
chi_square_components = create_chi_square_tab()
|
2683 |
corr_components = create_correlation_tab()
|
2684 |
|