faxnoprinter commited on
Commit
40f9541
·
verified ·
1 Parent(s): 005d3c0

Upload utils.py

Browse files
Files changed (1) hide show
  1. sketch/utils.py +392 -0
sketch/utils.py ADDED
@@ -0,0 +1,392 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import xml.etree.ElementTree as ET
2
+ import re
3
+ import numpy as np
4
+ from PIL import Image, ImageDraw, ImageFont
5
+ from io import BytesIO
6
+ import base64
7
+
8
+
9
+ # =========================
10
+ # ===== Grid related ======
11
+ # =========================
12
+ def create_grid_image(res=50, cell_size=12, header_size=12):
13
+ # Define the size of the grid
14
+ rows = res
15
+ cols = res
16
+
17
+ img_width = (cols + 1) * cell_size
18
+ img_height = (rows + 1) * cell_size
19
+
20
+ # Create a new image with a white background
21
+ img = Image.new('RGB', (img_width, img_height), 'white')
22
+ draw = ImageDraw.Draw(img)
23
+
24
+ # Load a font
25
+ try:
26
+ font = ImageFont.truetype("arial.ttf", header_size*0.85)
27
+ except IOError:
28
+ font = ImageFont.load_default()
29
+
30
+ # Draw the headers
31
+ for j in range(cols):
32
+ # Draw column header (letters)
33
+ text = str(j +1)
34
+ text_bbox = draw.textbbox((0, 0), text, font=font)
35
+ text_width = text_bbox[2] - text_bbox[0]
36
+ text_height = text_bbox[3] - text_bbox[1]
37
+ text_x = (j + 1) * cell_size + (cell_size - text_width) / 2
38
+ text_y = img_height - cell_size # - (cell_size - text_height) / 2
39
+ draw.text((text_x, text_y), text, fill="black", font=font)
40
+
41
+ for i in range(rows):
42
+ # Draw row header (numbers)
43
+ text = str(rows - i)
44
+ text_bbox = draw.textbbox((0, 0), text, font=font)
45
+ text_width = text_bbox[2] - text_bbox[0]
46
+ text_height = text_bbox[3] - text_bbox[1]
47
+ text_x = (cell_size - text_width) / 2
48
+ text_y = i * cell_size + (cell_size - text_height) / 2 - 0.2*text_height
49
+ draw.text((text_x, text_y), text, fill="black", font=font)
50
+
51
+ # Draw the grid
52
+ i = 1
53
+ draw.line([(i * cell_size, 0), (i * cell_size, img_height)], fill="black")
54
+ # Horizontal lines
55
+ draw.line([(0, img_height - cell_size), (img_width, img_height - cell_size)], fill="black")
56
+
57
+ positions={}
58
+ # Draw the grid
59
+ for i in range(rows)[::-1]:
60
+ for j in range(cols):
61
+ # Draw cell border
62
+ if j == 0:
63
+ draw.rectangle([(j + 0) * cell_size, (i + 0) * cell_size, (j + 1) * cell_size, (i + 1) * cell_size], outline="black")
64
+ if i == rows - 1:
65
+ draw.rectangle([(j + 0) * cell_size, (i + 1) * cell_size, (j + 1) * cell_size, (i + 2) * cell_size], outline="black")
66
+
67
+ # Calculate the position of the text
68
+ text = f"x{j + 1}y{i + 1}"
69
+ text_bbox = draw.textbbox((0, 0), text, font=font)
70
+ text_width = text_bbox[2] - text_bbox[0]
71
+ text_height = text_bbox[3] - text_bbox[1]
72
+ text_x = (j + 1) * cell_size + (cell_size - text_width) / 2
73
+ text_y = (i + 1) * cell_size + (cell_size - text_height) / 2
74
+
75
+ center_y = int(img_height - cell_size - (i * cell_size) - cell_size / 2)
76
+ center_x = int(j * cell_size + cell_size / 2 + cell_size)
77
+ positions[text] = (center_x, center_y)
78
+ return img, positions
79
+
80
+
81
+ def cells_to_pixels(res=50, cell_size=12, header_size=12):
82
+ # Define the size of the grid
83
+ rows = res
84
+ cols = res
85
+
86
+ img_width = (cols + 1) * cell_size
87
+ img_height = (rows + 1) * cell_size
88
+
89
+ positions={}
90
+ # Draw the grid
91
+ for i in range(rows)[::-1]:
92
+ for j in range(cols):
93
+ # Calculate the position of the text
94
+ text = f"x{j + 1}y{i + 1}"
95
+
96
+ center_y = int(img_height - cell_size - (i * cell_size) - cell_size / 2)
97
+ center_x = int(j * cell_size + cell_size / 2 + cell_size)
98
+ positions[text] = (center_x, center_y)
99
+
100
+ return positions
101
+
102
+
103
+ # =========================
104
+ # ===== LLM related =======
105
+ # =========================
106
+ def image_to_str(image: Image):
107
+ buffer = BytesIO()
108
+ image.save(buffer, format="JPEG")
109
+ buffer.seek(0)
110
+ image = base64.b64encode(buffer.read()).decode('utf-8')
111
+ return image
112
+
113
+
114
+
115
+ # =================================
116
+ # ===== SVG process related =======
117
+ # =================================
118
+ def bezier_point(P, t):
119
+ """Calculate a point on the Bézier curve for a given t."""
120
+ return (1-t)**3 * P[0] + 3*(1-t)**2 * t * P[1] + 3*(1-t) * t**2 * P[2] + t**3 * P[3]
121
+
122
+
123
+ def estimate_bezier_control_points_helper(sampled_points, t_values):
124
+ n = len(sampled_points)
125
+
126
+ if n == 1:
127
+ # Linear interpolation: the control points are simply the two points
128
+ P0 = np.array(sampled_points[0])
129
+ P1 = np.array(sampled_points[0]).astype(np.float64) + 0.0001
130
+ return np.array([P0, P1])
131
+
132
+ if n == 2:
133
+ # Linear interpolation: the control points are simply the two points
134
+ P0 = np.array(sampled_points[0])
135
+ P1 = np.array(sampled_points[1])
136
+ return np.array([P0, P1])
137
+
138
+ if n > len(t_values):
139
+ t_values = np.linespace(0,1,n)
140
+
141
+ elif n == 3:
142
+ # Quadratic Bézier curve: we need to solve for three control points
143
+ A = np.zeros((n, 3))
144
+ for i in range(n):
145
+ t = t_values[i]
146
+ A[i, 0] = (1-t)**2
147
+ A[i, 1] = 2*(1-t)*t
148
+ A[i, 2] = t**2
149
+
150
+ # Points (flattened)
151
+ B = np.array(sampled_points).reshape(-1, 2) # Assuming 2D points
152
+
153
+ # Solve the system (least squares)
154
+ P = np.linalg.lstsq(A, B, rcond=None)[0]
155
+ return P
156
+
157
+ # Matrix A
158
+ A = np.zeros((n, 4))
159
+ for i in range(n):
160
+ t = t_values[i]
161
+ A[i, 0] = (1-t)**3
162
+ A[i, 1] = 3*(1-t)**2 * t
163
+ A[i, 2] = 3*(1-t) * t**2
164
+ A[i, 3] = t**3
165
+
166
+ # Points (flattened)
167
+ B = np.array(sampled_points).reshape(-1, 2) # Assuming 2D points
168
+
169
+ # Solve the system (least squares)
170
+ P = np.linalg.lstsq(A, B, rcond=None)[0]
171
+ return P
172
+
173
+
174
+ def estimate_bezier_control_points( sampled_points, t_values):
175
+ if len(sampled_points) != len(t_values):
176
+ t_values = np.linspace(0,1, len(sampled_points))
177
+ P = estimate_bezier_control_points_helper(sampled_points, t_values)
178
+
179
+ if len(sampled_points) > 4:
180
+ # Calculate the mean squared error between sampled points and the fitted Bézier curve.
181
+ errors = []
182
+ for i, t in enumerate(t_values):
183
+ B_t = bezier_point(P, t)
184
+ error = np.linalg.norm(B_t - sampled_points[i])
185
+ errors.append(error)
186
+ error = np.mean(errors)
187
+
188
+ if error > 5 and len(sampled_points) >= 7:
189
+ mid = len(sampled_points) // 2
190
+ left_sampled_points = sampled_points[:mid+1]
191
+ right_sampled_points = sampled_points[mid:]
192
+ left_t_values = np.array(t_values[:mid+1])
193
+ right_t_values = np.array(t_values[mid:])
194
+
195
+ if len(left_sampled_points) == 3: # this applies in case we have 7 points
196
+ left_sampled_points.append(right_sampled_points[0])
197
+ left_t_values.append(right_t_values[0])
198
+
199
+ # Normalize t_values for each segment
200
+ left_t_values = (left_t_values - left_t_values[0]) / (left_t_values[-1] - left_t_values[0])
201
+ right_t_values = (right_t_values - right_t_values[0]) / (right_t_values[-1] - right_t_values[0])
202
+
203
+ # Recursively fit curves to each segment
204
+ P_left = estimate_bezier_control_points_helper(left_sampled_points, left_t_values)
205
+ P_right = estimate_bezier_control_points_helper(right_sampled_points, right_t_values)
206
+ P_right[0] = P_left[-1] # I added this to have the long strokes look more connected
207
+ return [P_left, P_right]
208
+ return [P]
209
+
210
+
211
+ def get_control_points(strokes_all, t_values_all, cells_to_pixels_map):
212
+ net_points = []
213
+ for j in range(len(strokes_all)):
214
+ sampled_cells = strokes_all[j]
215
+ t_values = t_values_all[j]
216
+ sampled_points = []
217
+ for cell in sampled_cells:
218
+ y,x = cells_to_pixels_map[cell]
219
+ sampled_points.append([y,x])
220
+ points_lst = estimate_bezier_control_points(sampled_points, t_values)
221
+ net_points.append(points_lst)
222
+ return net_points
223
+
224
+
225
+ def get_control_points_single_stroke(strokes_all, t_values_all, cells_to_pixels_map):
226
+ sampled_points = []
227
+ for cell in strokes_all:
228
+ y,x = cells_to_pixels_map[cell]
229
+ sampled_points.append([y,x])
230
+ points_lst = estimate_bezier_control_points(sampled_points, t_values_all)
231
+ return points_lst
232
+
233
+
234
+ def create_svg_path_data(control_points):
235
+ # Start the path with 'M' for the first point
236
+ # print("control_points", control_points[0])
237
+ path_data = 'M ' + np.array2string(np.array(control_points[0]), formatter={'float_kind':lambda x: "%.2f" % x}, separator=' ')[1:-1]
238
+ # Add 'L' for each subsequent point
239
+
240
+ # check if point
241
+ if len(control_points) == 1:
242
+ path_data += ' '
243
+ # check if line
244
+ elif len(control_points) == 2:
245
+ path_data += ' L '
246
+ # check if quadratic
247
+ elif len(control_points) == 3:
248
+ path_data += ' Q '
249
+ # check if cubic
250
+ elif len(control_points) == 4:
251
+ path_data += ' C '
252
+
253
+ # path_data += ' C '
254
+ for point in control_points[1:]:
255
+ # print("pt", point[0], point[1])
256
+ path_data += str(point[0]) + " " + str(point[1]) + " "
257
+
258
+ # Return the complete 'd' attribute string
259
+ return path_data
260
+
261
+
262
+ def format_svg(all_control_points, dim, stroke_width):
263
+ svg_width, svg_height = dim
264
+ sketch_text_svg = f"""<svg width="{svg_width}" height="{svg_height}" xmlns="http://www.w3.org/2000/svg">\n"""
265
+ for i, path in enumerate(all_control_points):
266
+ gropu_text = f"""<g id="s{i + 1}" stroke="black" stroke-width="{stroke_width}" fill="none" stroke-linecap="round">\n"""
267
+ for sub_path_cp in path: #sometimes 1 or 2
268
+ path_data = create_svg_path_data(sub_path_cp)
269
+ gropu_text += f"""<path d="{path_data}"/>\n"""
270
+ gropu_text += "</g>\n"
271
+ sketch_text_svg += gropu_text
272
+ sketch_text_svg += "</svg>"
273
+ return sketch_text_svg
274
+
275
+
276
+ def format_svg_single_stroke(group, dim, stroke_width, stroke_counter, stroke_color="black"):
277
+ sketch_text_svg = ""
278
+ gropu_text = f"""<g id="s{stroke_counter}" stroke="{stroke_color}" stroke-width="{stroke_width}" fill="none" stroke-linecap="round">\n"""
279
+ for sub_path_cp in group:
280
+ path_data = create_svg_path_data(sub_path_cp)
281
+ gropu_text += f"""<path d="{path_data}"/>\n"""
282
+ gropu_text += "</g>\n"
283
+ sketch_text_svg += gropu_text
284
+ return sketch_text_svg
285
+
286
+
287
+ # Note that this parse only the *first* part in the text in which you have the <strokes> </strokes> tags.
288
+ def parse_xml_string(llm_output, res):
289
+
290
+ strokes_start_marker = "<strokes>"
291
+ strokes_end_marker = "</strokes>"
292
+
293
+ # Find the start and end indices of the JSON string
294
+ start_index = llm_output.find(strokes_start_marker)
295
+ if start_index != -1:
296
+ # start_index += len(strokes_start_marker) # Move past the marker
297
+ end_index = llm_output.find(strokes_end_marker, start_index)
298
+ else:
299
+ return None # XML markers not found
300
+
301
+ if end_index == -1:
302
+ return None # End marker not found
303
+
304
+ # Extract the JSON string
305
+ strokes_str = llm_output[start_index:end_index + len(strokes_end_marker)].strip()#[:-1]
306
+ xml_str = f"<wrap>{strokes_str}</wrap>"
307
+ # Parse the XML string
308
+ root = ET.fromstring(xml_str)
309
+
310
+ # Initialize lists to hold strokes and t_values
311
+ strokes_list = "[\n"
312
+ t_values_list = "[\n"
313
+
314
+ # Iterate over all the strokes
315
+ for stroke in root.find('strokes'):
316
+ # Extract points and clean them up
317
+ points_text = stroke.find('points').text
318
+
319
+ # Extract t_values and convert them to float
320
+ t_values_text = stroke.find('t_values').text
321
+
322
+ # Append to the lists
323
+ strokes_list += f"[{points_text}],\n"
324
+ t_values_list += f"[{t_values_text}],\n"
325
+
326
+ strokes_list = re.sub(r'\d+', lambda x: str(min(int(x.group()), res)), strokes_list)
327
+ strokes_list = re.sub(r'\d+', lambda x: str(max(int(x.group()), 1)), strokes_list)
328
+
329
+ strokes_list += "]"
330
+ t_values_list += "]"
331
+ return strokes_list, t_values_list
332
+
333
+
334
+ def parse_xml_string_single_stroke(llm_output, res, stroke_counter):
335
+ strokes_start_marker = f"<s{stroke_counter}>"
336
+ strokes_end_marker = f"</s{stroke_counter}>"
337
+
338
+ # Find the start and end indices of the JSON string
339
+ start_index = llm_output.find(strokes_start_marker)
340
+ if start_index != -1:
341
+ # start_index += len(strokes_start_marker) # Move past the marker
342
+ end_index = llm_output.find(strokes_end_marker, start_index)
343
+ else:
344
+ return None # XML markers not found
345
+
346
+ if end_index == -1:
347
+ return None # End marker not found
348
+
349
+ # Extract the JSON string
350
+ strokes_str = llm_output[start_index:end_index + len(strokes_end_marker)].strip()#[:-1]
351
+ xml_str = f"<wrap>{strokes_str}</wrap>"
352
+ # Parse the XML string
353
+ root = ET.fromstring(xml_str)
354
+
355
+ # Iterate over all the strokes
356
+ stroke = root.find(f"s{stroke_counter}")
357
+ points_text = stroke.find('points').text
358
+
359
+ # Extract t_values and convert them to float
360
+ t_values_text = stroke.find('t_values').text
361
+
362
+ # Append to the lists
363
+ strokes_list = f"[{points_text}]"
364
+ t_values_list = f"[{t_values_text}]"
365
+
366
+ strokes_list = re.sub(r'\d+', lambda x: str(min(int(x.group()), res)), strokes_list)
367
+ strokes_list = re.sub(r'\d+', lambda x: str(max(int(x.group()), 1)), strokes_list)
368
+
369
+ return strokes_list, t_values_list
370
+
371
+
372
+ # =====================================
373
+ # ===== Collaborative Sketching =======
374
+ # =====================================
375
+ def get_cur_stroke_text(stroke_counter, llm_output):
376
+ start_marker = f"<s{stroke_counter}>"
377
+ end_marker = f"</s{stroke_counter}>"
378
+
379
+ # Find the start and end indices of the JSON string
380
+ start_index = llm_output.find(start_marker)
381
+ if start_index != -1:
382
+ # start_index += len(strokes_start_marker) # Move past the marker
383
+ end_index = llm_output.find(end_marker, start_index)
384
+ else:
385
+ return "" # XML markers not found
386
+
387
+ if end_index == -1:
388
+ return "" # End marker not found
389
+
390
+ # Extract the JSON string
391
+ strokes_str = llm_output[start_index:end_index + len(end_marker)].strip()#[:-1]
392
+ return strokes_str