Spaces:
Sleeping
Sleeping
File size: 14,262 Bytes
40f9541 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
import xml.etree.ElementTree as ET
import re
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from io import BytesIO
import base64
# =========================
# ===== Grid related ======
# =========================
def create_grid_image(res=50, cell_size=12, header_size=12):
# Define the size of the grid
rows = res
cols = res
img_width = (cols + 1) * cell_size
img_height = (rows + 1) * cell_size
# Create a new image with a white background
img = Image.new('RGB', (img_width, img_height), 'white')
draw = ImageDraw.Draw(img)
# Load a font
try:
font = ImageFont.truetype("arial.ttf", header_size*0.85)
except IOError:
font = ImageFont.load_default()
# Draw the headers
for j in range(cols):
# Draw column header (letters)
text = str(j +1)
text_bbox = draw.textbbox((0, 0), text, font=font)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
text_x = (j + 1) * cell_size + (cell_size - text_width) / 2
text_y = img_height - cell_size # - (cell_size - text_height) / 2
draw.text((text_x, text_y), text, fill="black", font=font)
for i in range(rows):
# Draw row header (numbers)
text = str(rows - i)
text_bbox = draw.textbbox((0, 0), text, font=font)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
text_x = (cell_size - text_width) / 2
text_y = i * cell_size + (cell_size - text_height) / 2 - 0.2*text_height
draw.text((text_x, text_y), text, fill="black", font=font)
# Draw the grid
i = 1
draw.line([(i * cell_size, 0), (i * cell_size, img_height)], fill="black")
# Horizontal lines
draw.line([(0, img_height - cell_size), (img_width, img_height - cell_size)], fill="black")
positions={}
# Draw the grid
for i in range(rows)[::-1]:
for j in range(cols):
# Draw cell border
if j == 0:
draw.rectangle([(j + 0) * cell_size, (i + 0) * cell_size, (j + 1) * cell_size, (i + 1) * cell_size], outline="black")
if i == rows - 1:
draw.rectangle([(j + 0) * cell_size, (i + 1) * cell_size, (j + 1) * cell_size, (i + 2) * cell_size], outline="black")
# Calculate the position of the text
text = f"x{j + 1}y{i + 1}"
text_bbox = draw.textbbox((0, 0), text, font=font)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
text_x = (j + 1) * cell_size + (cell_size - text_width) / 2
text_y = (i + 1) * cell_size + (cell_size - text_height) / 2
center_y = int(img_height - cell_size - (i * cell_size) - cell_size / 2)
center_x = int(j * cell_size + cell_size / 2 + cell_size)
positions[text] = (center_x, center_y)
return img, positions
def cells_to_pixels(res=50, cell_size=12, header_size=12):
# Define the size of the grid
rows = res
cols = res
img_width = (cols + 1) * cell_size
img_height = (rows + 1) * cell_size
positions={}
# Draw the grid
for i in range(rows)[::-1]:
for j in range(cols):
# Calculate the position of the text
text = f"x{j + 1}y{i + 1}"
center_y = int(img_height - cell_size - (i * cell_size) - cell_size / 2)
center_x = int(j * cell_size + cell_size / 2 + cell_size)
positions[text] = (center_x, center_y)
return positions
# =========================
# ===== LLM related =======
# =========================
def image_to_str(image: Image):
buffer = BytesIO()
image.save(buffer, format="JPEG")
buffer.seek(0)
image = base64.b64encode(buffer.read()).decode('utf-8')
return image
# =================================
# ===== SVG process related =======
# =================================
def bezier_point(P, t):
"""Calculate a point on the Bézier curve for a given t."""
return (1-t)**3 * P[0] + 3*(1-t)**2 * t * P[1] + 3*(1-t) * t**2 * P[2] + t**3 * P[3]
def estimate_bezier_control_points_helper(sampled_points, t_values):
n = len(sampled_points)
if n == 1:
# Linear interpolation: the control points are simply the two points
P0 = np.array(sampled_points[0])
P1 = np.array(sampled_points[0]).astype(np.float64) + 0.0001
return np.array([P0, P1])
if n == 2:
# Linear interpolation: the control points are simply the two points
P0 = np.array(sampled_points[0])
P1 = np.array(sampled_points[1])
return np.array([P0, P1])
if n > len(t_values):
t_values = np.linespace(0,1,n)
elif n == 3:
# Quadratic Bézier curve: we need to solve for three control points
A = np.zeros((n, 3))
for i in range(n):
t = t_values[i]
A[i, 0] = (1-t)**2
A[i, 1] = 2*(1-t)*t
A[i, 2] = t**2
# Points (flattened)
B = np.array(sampled_points).reshape(-1, 2) # Assuming 2D points
# Solve the system (least squares)
P = np.linalg.lstsq(A, B, rcond=None)[0]
return P
# Matrix A
A = np.zeros((n, 4))
for i in range(n):
t = t_values[i]
A[i, 0] = (1-t)**3
A[i, 1] = 3*(1-t)**2 * t
A[i, 2] = 3*(1-t) * t**2
A[i, 3] = t**3
# Points (flattened)
B = np.array(sampled_points).reshape(-1, 2) # Assuming 2D points
# Solve the system (least squares)
P = np.linalg.lstsq(A, B, rcond=None)[0]
return P
def estimate_bezier_control_points( sampled_points, t_values):
if len(sampled_points) != len(t_values):
t_values = np.linspace(0,1, len(sampled_points))
P = estimate_bezier_control_points_helper(sampled_points, t_values)
if len(sampled_points) > 4:
# Calculate the mean squared error between sampled points and the fitted Bézier curve.
errors = []
for i, t in enumerate(t_values):
B_t = bezier_point(P, t)
error = np.linalg.norm(B_t - sampled_points[i])
errors.append(error)
error = np.mean(errors)
if error > 5 and len(sampled_points) >= 7:
mid = len(sampled_points) // 2
left_sampled_points = sampled_points[:mid+1]
right_sampled_points = sampled_points[mid:]
left_t_values = np.array(t_values[:mid+1])
right_t_values = np.array(t_values[mid:])
if len(left_sampled_points) == 3: # this applies in case we have 7 points
left_sampled_points.append(right_sampled_points[0])
left_t_values.append(right_t_values[0])
# Normalize t_values for each segment
left_t_values = (left_t_values - left_t_values[0]) / (left_t_values[-1] - left_t_values[0])
right_t_values = (right_t_values - right_t_values[0]) / (right_t_values[-1] - right_t_values[0])
# Recursively fit curves to each segment
P_left = estimate_bezier_control_points_helper(left_sampled_points, left_t_values)
P_right = estimate_bezier_control_points_helper(right_sampled_points, right_t_values)
P_right[0] = P_left[-1] # I added this to have the long strokes look more connected
return [P_left, P_right]
return [P]
def get_control_points(strokes_all, t_values_all, cells_to_pixels_map):
net_points = []
for j in range(len(strokes_all)):
sampled_cells = strokes_all[j]
t_values = t_values_all[j]
sampled_points = []
for cell in sampled_cells:
y,x = cells_to_pixels_map[cell]
sampled_points.append([y,x])
points_lst = estimate_bezier_control_points(sampled_points, t_values)
net_points.append(points_lst)
return net_points
def get_control_points_single_stroke(strokes_all, t_values_all, cells_to_pixels_map):
sampled_points = []
for cell in strokes_all:
y,x = cells_to_pixels_map[cell]
sampled_points.append([y,x])
points_lst = estimate_bezier_control_points(sampled_points, t_values_all)
return points_lst
def create_svg_path_data(control_points):
# Start the path with 'M' for the first point
# print("control_points", control_points[0])
path_data = 'M ' + np.array2string(np.array(control_points[0]), formatter={'float_kind':lambda x: "%.2f" % x}, separator=' ')[1:-1]
# Add 'L' for each subsequent point
# check if point
if len(control_points) == 1:
path_data += ' '
# check if line
elif len(control_points) == 2:
path_data += ' L '
# check if quadratic
elif len(control_points) == 3:
path_data += ' Q '
# check if cubic
elif len(control_points) == 4:
path_data += ' C '
# path_data += ' C '
for point in control_points[1:]:
# print("pt", point[0], point[1])
path_data += str(point[0]) + " " + str(point[1]) + " "
# Return the complete 'd' attribute string
return path_data
def format_svg(all_control_points, dim, stroke_width):
svg_width, svg_height = dim
sketch_text_svg = f"""<svg width="{svg_width}" height="{svg_height}" xmlns="http://www.w3.org/2000/svg">\n"""
for i, path in enumerate(all_control_points):
gropu_text = f"""<g id="s{i + 1}" stroke="black" stroke-width="{stroke_width}" fill="none" stroke-linecap="round">\n"""
for sub_path_cp in path: #sometimes 1 or 2
path_data = create_svg_path_data(sub_path_cp)
gropu_text += f"""<path d="{path_data}"/>\n"""
gropu_text += "</g>\n"
sketch_text_svg += gropu_text
sketch_text_svg += "</svg>"
return sketch_text_svg
def format_svg_single_stroke(group, dim, stroke_width, stroke_counter, stroke_color="black"):
sketch_text_svg = ""
gropu_text = f"""<g id="s{stroke_counter}" stroke="{stroke_color}" stroke-width="{stroke_width}" fill="none" stroke-linecap="round">\n"""
for sub_path_cp in group:
path_data = create_svg_path_data(sub_path_cp)
gropu_text += f"""<path d="{path_data}"/>\n"""
gropu_text += "</g>\n"
sketch_text_svg += gropu_text
return sketch_text_svg
# Note that this parse only the *first* part in the text in which you have the <strokes> </strokes> tags.
def parse_xml_string(llm_output, res):
strokes_start_marker = "<strokes>"
strokes_end_marker = "</strokes>"
# Find the start and end indices of the JSON string
start_index = llm_output.find(strokes_start_marker)
if start_index != -1:
# start_index += len(strokes_start_marker) # Move past the marker
end_index = llm_output.find(strokes_end_marker, start_index)
else:
return None # XML markers not found
if end_index == -1:
return None # End marker not found
# Extract the JSON string
strokes_str = llm_output[start_index:end_index + len(strokes_end_marker)].strip()#[:-1]
xml_str = f"<wrap>{strokes_str}</wrap>"
# Parse the XML string
root = ET.fromstring(xml_str)
# Initialize lists to hold strokes and t_values
strokes_list = "[\n"
t_values_list = "[\n"
# Iterate over all the strokes
for stroke in root.find('strokes'):
# Extract points and clean them up
points_text = stroke.find('points').text
# Extract t_values and convert them to float
t_values_text = stroke.find('t_values').text
# Append to the lists
strokes_list += f"[{points_text}],\n"
t_values_list += f"[{t_values_text}],\n"
strokes_list = re.sub(r'\d+', lambda x: str(min(int(x.group()), res)), strokes_list)
strokes_list = re.sub(r'\d+', lambda x: str(max(int(x.group()), 1)), strokes_list)
strokes_list += "]"
t_values_list += "]"
return strokes_list, t_values_list
def parse_xml_string_single_stroke(llm_output, res, stroke_counter):
strokes_start_marker = f"<s{stroke_counter}>"
strokes_end_marker = f"</s{stroke_counter}>"
# Find the start and end indices of the JSON string
start_index = llm_output.find(strokes_start_marker)
if start_index != -1:
# start_index += len(strokes_start_marker) # Move past the marker
end_index = llm_output.find(strokes_end_marker, start_index)
else:
return None # XML markers not found
if end_index == -1:
return None # End marker not found
# Extract the JSON string
strokes_str = llm_output[start_index:end_index + len(strokes_end_marker)].strip()#[:-1]
xml_str = f"<wrap>{strokes_str}</wrap>"
# Parse the XML string
root = ET.fromstring(xml_str)
# Iterate over all the strokes
stroke = root.find(f"s{stroke_counter}")
points_text = stroke.find('points').text
# Extract t_values and convert them to float
t_values_text = stroke.find('t_values').text
# Append to the lists
strokes_list = f"[{points_text}]"
t_values_list = f"[{t_values_text}]"
strokes_list = re.sub(r'\d+', lambda x: str(min(int(x.group()), res)), strokes_list)
strokes_list = re.sub(r'\d+', lambda x: str(max(int(x.group()), 1)), strokes_list)
return strokes_list, t_values_list
# =====================================
# ===== Collaborative Sketching =======
# =====================================
def get_cur_stroke_text(stroke_counter, llm_output):
start_marker = f"<s{stroke_counter}>"
end_marker = f"</s{stroke_counter}>"
# Find the start and end indices of the JSON string
start_index = llm_output.find(start_marker)
if start_index != -1:
# start_index += len(strokes_start_marker) # Move past the marker
end_index = llm_output.find(end_marker, start_index)
else:
return "" # XML markers not found
if end_index == -1:
return "" # End marker not found
# Extract the JSON string
strokes_str = llm_output[start_index:end_index + len(end_marker)].strip()#[:-1]
return strokes_str
|