Alejandro Ardila
commited on
Commit
·
d0c87f7
1
Parent(s):
b1fe90c
First attempt
Browse files- .gitignore +179 -0
- app.py +98 -0
- modal_app.py +319 -0
- requirements.txt +7 -0
.gitignore
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
pip-wheel-metadata/
|
24 |
+
share/python-wheels/
|
25 |
+
*.egg-info/
|
26 |
+
.installed.cfg
|
27 |
+
*.egg
|
28 |
+
MANIFEST
|
29 |
+
|
30 |
+
# PyInstaller
|
31 |
+
# Usually these files are written by a python script from a template
|
32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
33 |
+
*.manifest
|
34 |
+
*.spec
|
35 |
+
|
36 |
+
# Installer logs
|
37 |
+
pip-log.txt
|
38 |
+
pip-delete-this-directory.txt
|
39 |
+
|
40 |
+
# Unit test / coverage reports
|
41 |
+
htmlcov/
|
42 |
+
.tox/
|
43 |
+
.nox/
|
44 |
+
.coverage
|
45 |
+
.coverage.*
|
46 |
+
.cache
|
47 |
+
nosetests.xml
|
48 |
+
coverage.xml
|
49 |
+
*.cover
|
50 |
+
*.py,cover
|
51 |
+
.hypothesis/
|
52 |
+
.pytest_cache/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
target/
|
76 |
+
|
77 |
+
# Jupyter Notebook
|
78 |
+
.ipynb_checkpoints
|
79 |
+
|
80 |
+
# IPython
|
81 |
+
profile_default/
|
82 |
+
ipython_config.py
|
83 |
+
|
84 |
+
# pyenv
|
85 |
+
.python-version
|
86 |
+
|
87 |
+
# pipenv
|
88 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
89 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
90 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
91 |
+
# install all needed dependencies.
|
92 |
+
#Pipfile.lock
|
93 |
+
|
94 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
95 |
+
__pypackages__/
|
96 |
+
|
97 |
+
# Celery stuff
|
98 |
+
celerybeat-schedule
|
99 |
+
celerybeat.pid
|
100 |
+
|
101 |
+
# SageMath parsed files
|
102 |
+
*.sage.py
|
103 |
+
|
104 |
+
# Environments
|
105 |
+
.env
|
106 |
+
.venv
|
107 |
+
env/
|
108 |
+
venv/
|
109 |
+
ENV/
|
110 |
+
env.bak/
|
111 |
+
venv.bak/
|
112 |
+
|
113 |
+
# Spyder project settings
|
114 |
+
.spyderproject
|
115 |
+
.spyproject
|
116 |
+
|
117 |
+
# Rope project settings
|
118 |
+
.ropeproject
|
119 |
+
|
120 |
+
# mkdocs documentation
|
121 |
+
/site
|
122 |
+
|
123 |
+
# mypy
|
124 |
+
.mypy_cache/
|
125 |
+
.dmypy.json
|
126 |
+
dmypy.json
|
127 |
+
|
128 |
+
# Pyre type checker
|
129 |
+
.pyre/
|
130 |
+
|
131 |
+
# pytype static type analyzer
|
132 |
+
.pytype/
|
133 |
+
|
134 |
+
# Cython debug symbols
|
135 |
+
cython_debug/
|
136 |
+
|
137 |
+
# IDE
|
138 |
+
.vscode/
|
139 |
+
.idea/
|
140 |
+
*.swp
|
141 |
+
*.swo
|
142 |
+
*~
|
143 |
+
|
144 |
+
# OS generated files
|
145 |
+
.DS_Store
|
146 |
+
.DS_Store?
|
147 |
+
._*
|
148 |
+
.Spotlight-V100
|
149 |
+
.Trashes
|
150 |
+
ehthumbs.db
|
151 |
+
Thumbs.db
|
152 |
+
|
153 |
+
# Temporary files
|
154 |
+
*.tmp
|
155 |
+
*.temp
|
156 |
+
|
157 |
+
# API keys and secrets
|
158 |
+
.env.local
|
159 |
+
.env.development.local
|
160 |
+
.env.test.local
|
161 |
+
.env.production.local
|
162 |
+
secrets.json
|
163 |
+
config.json
|
164 |
+
*.key
|
165 |
+
*.pem
|
166 |
+
|
167 |
+
# Logs
|
168 |
+
logs/
|
169 |
+
*.log
|
170 |
+
|
171 |
+
# Database
|
172 |
+
*.db
|
173 |
+
*.sqlite
|
174 |
+
*.sqlite3
|
175 |
+
|
176 |
+
# Mac specific
|
177 |
+
.AppleDouble
|
178 |
+
.LSOverride
|
179 |
+
Icon
|
app.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import modal
|
3 |
+
import json
|
4 |
+
|
5 |
+
# --- Configuration ---
|
6 |
+
MODAL_APP_NAME = "sitegeist-ai-app"
|
7 |
+
|
8 |
+
def analyze_web_content(urls_json: str, deep_analysis: bool = False, analysis_prompt: str = "Summarize the content and identify key themes."):
|
9 |
+
"""
|
10 |
+
MCP Tool: Analyzes web content from one or more URLs.
|
11 |
+
Performs deep analysis with marketing metrics if a single URL is provided and deep_analysis is True.
|
12 |
+
Otherwise, performs a swarm analysis for multiple URLs or a single URL without deep_analysis.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
urls_json (str): A JSON string representing a list of URLs. e.g., '["http://example.com", "http://another.com"]'
|
16 |
+
deep_analysis (bool): If True and only one URL is provided, performs an in-depth analysis.
|
17 |
+
analysis_prompt (str): The specific analysis to perform on the content.
|
18 |
+
"""
|
19 |
+
print(f"Received request: deep_analysis={deep_analysis}, prompt='{analysis_prompt}', urls_json='{urls_json}'")
|
20 |
+
try:
|
21 |
+
urls = json.loads(urls_json)
|
22 |
+
if not isinstance(urls, list) or not all(isinstance(url, str) for url in urls):
|
23 |
+
raise ValueError("Input must be a JSON string of a list of URLs.")
|
24 |
+
if not urls:
|
25 |
+
return json.dumps({"status": "error", "message": "URL list cannot be empty."})
|
26 |
+
except json.JSONDecodeError:
|
27 |
+
return json.dumps({"status": "error", "message": "Invalid JSON format for URLs."})
|
28 |
+
except ValueError as ve:
|
29 |
+
return json.dumps({"status": "error", "message": str(ve)})
|
30 |
+
|
31 |
+
result = None
|
32 |
+
try:
|
33 |
+
if len(urls) == 1 and deep_analysis:
|
34 |
+
print(f"Calling Modal: deep_analyze_url for {urls[0]}")
|
35 |
+
# Lookup the Modal function
|
36 |
+
modal_deep_analyze = modal.Function.lookup(MODAL_APP_NAME, "deep_analyze_url")
|
37 |
+
if modal_deep_analyze is None:
|
38 |
+
return json.dumps({"status": "error", "message": f"Could not find Modal function 'deep_analyze_url' in app '{MODAL_APP_NAME}'."})
|
39 |
+
# Call the Modal function remotely
|
40 |
+
result = modal_deep_analyze.remote(url=urls[0])
|
41 |
+
else:
|
42 |
+
print(f"Calling Modal: swarm_analyze_urls for {len(urls)} URLs")
|
43 |
+
# Lookup the Modal function
|
44 |
+
modal_swarm_analyze = modal.Function.lookup(MODAL_APP_NAME, "swarm_analyze_urls")
|
45 |
+
if modal_swarm_analyze is None:
|
46 |
+
return json.dumps({"status": "error", "message": f"Could not find Modal function 'swarm_analyze_urls' in app '{MODAL_APP_NAME}'."})
|
47 |
+
# Call the Modal function remotely
|
48 |
+
result = modal_swarm_analyze.remote(urls=urls, analysis_prompt=analysis_prompt)
|
49 |
+
|
50 |
+
return json.dumps(result, indent=2) # Return the result from Modal as a JSON string
|
51 |
+
|
52 |
+
except modal.exception.NotFoundError as e:
|
53 |
+
print(f"Modal function not found: {e}")
|
54 |
+
return json.dumps({"status": "error", "message": f"Modal function lookup failed. Ensure '{MODAL_APP_NAME}' is deployed and functions are correctly named. Details: {e}"})
|
55 |
+
except Exception as e:
|
56 |
+
print(f"An unexpected error occurred: {e}")
|
57 |
+
return json.dumps({"status": "error", "message": f"An unexpected error occurred: {str(e)}"})
|
58 |
+
|
59 |
+
# --- Gradio Interface for Testing (if not using MCP directly) ---
|
60 |
+
# This allows you to test the analyze_web_content function via a web UI.
|
61 |
+
# You would typically expose `analyze_web_content` directly as an MCP tool.
|
62 |
+
with gr.Blocks() as demo:
|
63 |
+
gr.Markdown("# Sitegeist AI: Marketing & Content Intelligence Engine")
|
64 |
+
gr.Markdown(
|
65 |
+
"Enter URLs as a JSON list (e.g., `[\"http://url1.com\", \"http://url2.com\"]`). "
|
66 |
+
"The Modal backend calls are mocked and will return predefined data."
|
67 |
+
)
|
68 |
+
with gr.Row():
|
69 |
+
urls_input = gr.Textbox(label="URLs (JSON list)", placeholder='["https://example.com"]')
|
70 |
+
deep_analysis_checkbox = gr.Checkbox(label="Perform Deep Analysis (for single URL)", value=False)
|
71 |
+
analysis_prompt_input = gr.Textbox(label="Analysis Prompt", value="Summarize the content.")
|
72 |
+
submit_button = gr.Button("Analyze Content")
|
73 |
+
output_json = gr.JSON(label="Analysis Result")
|
74 |
+
|
75 |
+
submit_button.click(
|
76 |
+
analyze_web_content,
|
77 |
+
inputs=[urls_input, deep_analysis_checkbox, analysis_prompt_input],
|
78 |
+
outputs=output_json
|
79 |
+
)
|
80 |
+
|
81 |
+
if __name__ == "__main__":
|
82 |
+
# To run this Gradio app: python app.py
|
83 |
+
# Ensure your Modal token is configured (`modal token set`)
|
84 |
+
# And the Modal app (`modal_app.py`) is deployed (`modal deploy modal_app.py`)
|
85 |
+
# or runnable locally if you are testing `modal run modal_app.py` in another terminal.
|
86 |
+
|
87 |
+
# For the Gradio app to successfully call `modal.Function.lookup()`,
|
88 |
+
# it generally expects the Modal app to be deployed, or you need to be
|
89 |
+
# running within a `modal.stub.run()` context if calling local stubs
|
90 |
+
# from another Modal process, which is more advanced.
|
91 |
+
# The simplest way for this sketch is to deploy `modal_app.py` first.
|
92 |
+
print("Attempting to launch Gradio demo...")
|
93 |
+
print("REMINDER: For Gradio to connect to Modal functions,")
|
94 |
+
print(f"1. Deploy 'modal_app.py' using 'modal deploy modal_app.py'.")
|
95 |
+
print(f"2. Ensure your Modal token is set up.")
|
96 |
+
print(f"3. The MODAL_APP_NAME ('{MODAL_APP_NAME}') in app.py must match the app name in modal_app.py.")
|
97 |
+
|
98 |
+
demo.launch(mcp_server=True)
|
modal_app.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import modal
|
2 |
+
import requests
|
3 |
+
import textstat # For readability scores
|
4 |
+
from bs4 import BeautifulSoup # For HTML parsing
|
5 |
+
import json # For handling JSON data
|
6 |
+
import os # For environment variables
|
7 |
+
import openai # For OpenAI API calls
|
8 |
+
|
9 |
+
# --- Configuration ---
|
10 |
+
# Define a Modal image with necessary Python packages
|
11 |
+
modal_image = modal.Image.debian_slim().pip_install(
|
12 |
+
"requests",
|
13 |
+
"beautifulsoup4",
|
14 |
+
"textstat",
|
15 |
+
"lxml", # A robust parser for BeautifulSoup
|
16 |
+
"openai" # OpenAI API library
|
17 |
+
)
|
18 |
+
|
19 |
+
# Define a Modal App. The name is important for lookup from Gradio.
|
20 |
+
app = modal.App(name="sitegeist-ai-app")
|
21 |
+
|
22 |
+
# --- OpenAI LLM Function ---
|
23 |
+
def query_llm(prompt_text: str, expected_json_structure: dict):
|
24 |
+
"""
|
25 |
+
Calls the OpenAI API to get structured JSON responses.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
prompt_text (str): The prompt to send to OpenAI
|
29 |
+
expected_json_structure (dict): Dictionary structure to guide the output format
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
dict: Parsed JSON response from OpenAI
|
33 |
+
|
34 |
+
Raises:
|
35 |
+
Exception: If API call fails or response is not valid JSON
|
36 |
+
"""
|
37 |
+
try:
|
38 |
+
# Initialize OpenAI client with API key from environment variable
|
39 |
+
client = openai.OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
|
40 |
+
|
41 |
+
# Create system prompt that instructs the model to return JSON with expected structure
|
42 |
+
expected_keys = list(expected_json_structure.keys())
|
43 |
+
system_prompt = (
|
44 |
+
"You are a helpful assistant designed to output JSON. "
|
45 |
+
"Based on the user's content, provide a JSON object with the following keys: "
|
46 |
+
f"{', '.join(expected_keys)}. "
|
47 |
+
"Ensure your response is valid JSON format only."
|
48 |
+
)
|
49 |
+
|
50 |
+
print(f"--- OpenAI API CALLED ---\nPrompt: {prompt_text[:200]}...\nExpected JSON keys: {expected_keys}")
|
51 |
+
|
52 |
+
# Make the API call with JSON mode enabled
|
53 |
+
response = client.chat.completions.create(
|
54 |
+
model="gpt-4-turbo-preview",
|
55 |
+
response_format={"type": "json_object"}, # Enable JSON mode
|
56 |
+
messages=[
|
57 |
+
{"role": "system", "content": system_prompt},
|
58 |
+
{"role": "user", "content": prompt_text}
|
59 |
+
],
|
60 |
+
temperature=0.3 # Lower temperature for more consistent structured output
|
61 |
+
)
|
62 |
+
|
63 |
+
# Extract and parse the JSON response
|
64 |
+
result_json_str = response.choices[0].message.content
|
65 |
+
print(f"OpenAI Response: {result_json_str[:200]}...")
|
66 |
+
|
67 |
+
# Parse the JSON string into a Python dictionary
|
68 |
+
result_dict = json.loads(result_json_str)
|
69 |
+
return result_dict
|
70 |
+
|
71 |
+
except openai.APIError as e:
|
72 |
+
error_msg = f"OpenAI API error: {str(e)}"
|
73 |
+
print(f"ERROR: {error_msg}")
|
74 |
+
|
75 |
+
# Fallback: Try without JSON mode if the model doesn't support it
|
76 |
+
if "response_format" in str(e) and "not supported" in str(e):
|
77 |
+
print("Falling back to non-JSON mode...")
|
78 |
+
try:
|
79 |
+
fallback_response = client.chat.completions.create(
|
80 |
+
model="gpt-4-turbo-preview",
|
81 |
+
messages=[
|
82 |
+
{"role": "system", "content": system_prompt + " Make sure to respond with valid JSON only."},
|
83 |
+
{"role": "user", "content": prompt_text}
|
84 |
+
],
|
85 |
+
temperature=0.3
|
86 |
+
)
|
87 |
+
|
88 |
+
fallback_result_str = fallback_response.choices[0].message.content
|
89 |
+
print(f"Fallback Response: {fallback_result_str[:200]}...")
|
90 |
+
|
91 |
+
# Try to extract JSON from the response (in case there's extra text)
|
92 |
+
import re
|
93 |
+
json_match = re.search(r'\{.*\}', fallback_result_str, re.DOTALL)
|
94 |
+
if json_match:
|
95 |
+
json_str = json_match.group()
|
96 |
+
return json.loads(json_str)
|
97 |
+
else:
|
98 |
+
return json.loads(fallback_result_str)
|
99 |
+
|
100 |
+
except Exception as fallback_error:
|
101 |
+
return {"error": f"Fallback also failed: {str(fallback_error)}", "status": "fallback_failed"}
|
102 |
+
else:
|
103 |
+
return {"error": error_msg, "status": "api_error"}
|
104 |
+
|
105 |
+
except json.JSONDecodeError as e:
|
106 |
+
error_msg = f"Failed to parse JSON response: {str(e)}"
|
107 |
+
print(f"ERROR: {error_msg}")
|
108 |
+
return {"error": error_msg, "status": "json_parse_error", "raw_response": result_json_str}
|
109 |
+
|
110 |
+
except Exception as e:
|
111 |
+
error_msg = f"Unexpected error in OpenAI call: {str(e)}"
|
112 |
+
print(f"ERROR: {error_msg}")
|
113 |
+
return {"error": error_msg, "status": "unexpected_error"}
|
114 |
+
|
115 |
+
# --- Deep Analysis Function (Runs on Modal) ---
|
116 |
+
@app.function(image=modal_image, secrets=[modal.Secret.from_name("openai-secret")])
|
117 |
+
def deep_analyze_url(url: str):
|
118 |
+
"""
|
119 |
+
Performs a deep marketing and content analysis on a single URL.
|
120 |
+
"""
|
121 |
+
print(f"Deep analyzing URL: {url}")
|
122 |
+
scraped_data = {}
|
123 |
+
text_content = ""
|
124 |
+
|
125 |
+
# 1. Scraping
|
126 |
+
try:
|
127 |
+
response = requests.get(url, timeout=10, headers={'User-Agent': 'Mozilla/5.0'})
|
128 |
+
response.raise_for_status() # Raise an exception for HTTP errors
|
129 |
+
soup = BeautifulSoup(response.content, 'lxml')
|
130 |
+
|
131 |
+
# Try to find main content, fall back to body
|
132 |
+
main_content_area = soup.find('article') or soup.find('main') or soup.body
|
133 |
+
if main_content_area:
|
134 |
+
text_content = main_content_area.get_text(separator=' ', strip=True)
|
135 |
+
else:
|
136 |
+
text_content = soup.get_text(separator=' ', strip=True) # Fallback if no specific main area
|
137 |
+
|
138 |
+
scraped_data["meta_title"] = soup.find('title').get_text(strip=True) if soup.find('title') else "Not found"
|
139 |
+
meta_desc_tag = soup.find('meta', attrs={'name': 'description'})
|
140 |
+
scraped_data["meta_description"] = meta_desc_tag['content'] if meta_desc_tag and 'content' in meta_desc_tag.attrs else "Not found"
|
141 |
+
|
142 |
+
# Link counts
|
143 |
+
all_links = [a['href'] for a in soup.find_all('a', href=True)]
|
144 |
+
scraped_data["internal_links"] = len([link for link in all_links if url in link or link.startswith('/')])
|
145 |
+
scraped_data["external_links"] = len([link for link in all_links if url not in link and link.startswith('http')])
|
146 |
+
|
147 |
+
except requests.exceptions.RequestException as e:
|
148 |
+
return {"url": url, "status": "failed", "error": f"Scraping failed: {str(e)}"}
|
149 |
+
except Exception as e:
|
150 |
+
return {"url": url, "status": "failed", "error": f"Error during scraping/parsing: {str(e)}"}
|
151 |
+
|
152 |
+
if not text_content:
|
153 |
+
return {"url": url, "status": "failed", "error": "Could not extract text content."}
|
154 |
+
|
155 |
+
# 2. Statistical & SEO Analysis (using textstat)
|
156 |
+
try:
|
157 |
+
word_count = textstat.lexicon_count(text_content)
|
158 |
+
sentence_count = textstat.sentence_count(text_content)
|
159 |
+
readability_metrics = {
|
160 |
+
"flesch_reading_ease": textstat.flesch_reading_ease(text_content),
|
161 |
+
"flesch_kincaid_grade": textstat.flesch_kincaid_grade(text_content),
|
162 |
+
"estimated_reading_time_minutes": round(word_count / 200, 2) if word_count > 0 else 0,
|
163 |
+
"word_count": word_count,
|
164 |
+
"sentence_count": sentence_count,
|
165 |
+
}
|
166 |
+
except Exception as e:
|
167 |
+
readability_metrics = {"error": f"Readability analysis failed: {str(e)}"}
|
168 |
+
|
169 |
+
|
170 |
+
# 3. LLM-Powered Qualitative Analysis (OpenAI)
|
171 |
+
llm_prompt_for_deep_analysis = f"""
|
172 |
+
Analyze the following web content from {url}. Extract the requested information and provide it in a JSON format.
|
173 |
+
|
174 |
+
Content: "{text_content}"
|
175 |
+
|
176 |
+
Please analyze this content and provide:
|
177 |
+
- primary_keywords: List of 3-5 main keywords/topics
|
178 |
+
- lsi_keywords: List of related semantic keywords (5-8 keywords)
|
179 |
+
- sentiment: Object with "score" (Positive/Negative/Neutral) and "confidence" (0-1)
|
180 |
+
- emotional_tone: List of emotional descriptors (2-4 items)
|
181 |
+
- cta_analysis: Object with "has_cta" (boolean) and "cta_text" (string or null)
|
182 |
+
- brand_mentions: List of brand names mentioned in the content
|
183 |
+
"""
|
184 |
+
|
185 |
+
# This defines the structure we expect from the LLM for deep analysis
|
186 |
+
expected_llm_structure_deep = {
|
187 |
+
"primary_keywords": [], "lsi_keywords": [], "sentiment": {},
|
188 |
+
"emotional_tone": [], "cta_analysis": {}, "brand_mentions": []
|
189 |
+
}
|
190 |
+
llm_driven_analysis_result = query_llm(llm_prompt_for_deep_analysis, expected_llm_structure_deep)
|
191 |
+
|
192 |
+
# Check if there was an error in the LLM call
|
193 |
+
if "error" in llm_driven_analysis_result:
|
194 |
+
return {
|
195 |
+
"url": url,
|
196 |
+
"status": "partial_success",
|
197 |
+
"analysis": {
|
198 |
+
"readability_metrics": readability_metrics,
|
199 |
+
"seo_metrics": {
|
200 |
+
"meta_title": scraped_data.get("meta_title"),
|
201 |
+
"meta_description": scraped_data.get("meta_description"),
|
202 |
+
"internal_links": scraped_data.get("internal_links"),
|
203 |
+
"external_links": scraped_data.get("external_links"),
|
204 |
+
},
|
205 |
+
"llm_driven_analysis": llm_driven_analysis_result # Will contain error info
|
206 |
+
}
|
207 |
+
}
|
208 |
+
|
209 |
+
# 4. Combine and Return
|
210 |
+
return {
|
211 |
+
"url": url,
|
212 |
+
"status": "success",
|
213 |
+
"analysis": {
|
214 |
+
"readability_metrics": readability_metrics,
|
215 |
+
"seo_metrics": { # Merging scraped SEO data here
|
216 |
+
"meta_title": scraped_data.get("meta_title"),
|
217 |
+
"meta_description": scraped_data.get("meta_description"),
|
218 |
+
"internal_links": scraped_data.get("internal_links"),
|
219 |
+
"external_links": scraped_data.get("external_links"),
|
220 |
+
},
|
221 |
+
"llm_driven_analysis": llm_driven_analysis_result
|
222 |
+
}
|
223 |
+
}
|
224 |
+
|
225 |
+
# --- Swarm Analysis Functions (Runs on Modal) ---
|
226 |
+
@app.function(image=modal_image, secrets=[modal.Secret.from_name("openai-secret")])
|
227 |
+
def scrape_and_analyze(url: str, analysis_prompt_for_swarm: str):
|
228 |
+
"""
|
229 |
+
Helper function for swarm analysis: scrapes and performs a *simple* analysis on one URL.
|
230 |
+
"""
|
231 |
+
print(f"Swarm - analyzing single URL: {url}")
|
232 |
+
try:
|
233 |
+
response = requests.get(url, timeout=10, headers={'User-Agent': 'Mozilla/5.0'})
|
234 |
+
response.raise_for_status()
|
235 |
+
soup = BeautifulSoup(response.content, 'lxml')
|
236 |
+
main_content_area = soup.find('article') or soup.find('main') or soup.body
|
237 |
+
text_content = main_content_area.get_text(separator=' ', strip=True) if main_content_area else soup.get_text(separator=' ', strip=True)
|
238 |
+
|
239 |
+
if not text_content:
|
240 |
+
return {"url": url, "status": "failed", "error": "No text content found"}
|
241 |
+
|
242 |
+
# OpenAI call for a simple summary
|
243 |
+
llm_prompt = f"""
|
244 |
+
Content from {url}: {text_content[:1000]}
|
245 |
+
|
246 |
+
{analysis_prompt_for_swarm}
|
247 |
+
|
248 |
+
Please provide a concise summary of the main topic and key points from this content.
|
249 |
+
"""
|
250 |
+
summary_result = query_llm(llm_prompt, {"summary": ""}) # Expecting a simple summary
|
251 |
+
return {"url": url, "status": "success", "analysis": summary_result}
|
252 |
+
|
253 |
+
except requests.exceptions.RequestException as e:
|
254 |
+
return {"url": url, "status": "failed", "error": f"Scraping failed: {str(e)}"}
|
255 |
+
except Exception as e:
|
256 |
+
return {"url": url, "status": "failed", "error": f"Processing error: {str(e)}"}
|
257 |
+
|
258 |
+
@app.function(image=modal_image, secrets=[modal.Secret.from_name("openai-secret")], timeout=60000) # Longer timeout for potentially many URLs
|
259 |
+
def swarm_analyze_urls(urls: list[str], analysis_prompt: str):
|
260 |
+
"""
|
261 |
+
Scrapes and analyzes a list of URLs in parallel for swarm mode.
|
262 |
+
"""
|
263 |
+
print(f"Swarm analyzing {len(urls)} URLs. Prompt: {analysis_prompt}")
|
264 |
+
individual_results = []
|
265 |
+
# Use .map to run scrape_and_analyze in parallel for each URL
|
266 |
+
# The 'kwargs' argument passes the analysis_prompt to each mapped function call
|
267 |
+
for result in scrape_and_analyze.map(urls, kwargs={"analysis_prompt_for_swarm": analysis_prompt}):
|
268 |
+
individual_results.append(result)
|
269 |
+
|
270 |
+
# Aggregate results (OpenAI call)
|
271 |
+
successful_summaries = [
|
272 |
+
res["analysis"]["summary"]
|
273 |
+
for res in individual_results
|
274 |
+
if res["status"] == "success" and "analysis" in res and "summary" in res["analysis"]
|
275 |
+
]
|
276 |
+
|
277 |
+
if not successful_summaries:
|
278 |
+
return {
|
279 |
+
"overall_summary": "No successful analyses to aggregate.",
|
280 |
+
"top_themes": [],
|
281 |
+
"individual_results": individual_results
|
282 |
+
}
|
283 |
+
|
284 |
+
aggregation_prompt = f"""
|
285 |
+
Synthesize these summaries into an comprehensive overview and identify the top themes:
|
286 |
+
|
287 |
+
Summaries: {'. '.join(successful_summaries)}
|
288 |
+
|
289 |
+
Please provide:
|
290 |
+
- aggregated_summary: A comprehensive overview synthesizing all summaries
|
291 |
+
- top_themes: List of 3-5 main themes that emerge across all content
|
292 |
+
"""
|
293 |
+
aggregated_llm_result = query_llm(aggregation_prompt, {"aggregated_summary": "", "top_themes": []})
|
294 |
+
|
295 |
+
return {
|
296 |
+
"overall_summary": aggregated_llm_result.get("aggregated_summary"),
|
297 |
+
"top_themes": aggregated_llm_result.get("top_themes"),
|
298 |
+
"individual_results": individual_results
|
299 |
+
}
|
300 |
+
|
301 |
+
# --- Local Stub for Testing (Optional) ---
|
302 |
+
# This allows you to test your Modal functions locally without deploying.
|
303 |
+
# To run: modal run modal_app.py
|
304 |
+
@app.local_entrypoint()
|
305 |
+
def main():
|
306 |
+
print("--- Testing deep_analyze_url ---")
|
307 |
+
# Test with a known working URL for scraping
|
308 |
+
test_url_deep = "https://modal.com/docs/guide" # Example URL
|
309 |
+
deep_result = deep_analyze_url.remote(test_url_deep)
|
310 |
+
print(json.dumps(deep_result, indent=2))
|
311 |
+
|
312 |
+
print("\n--- Testing swarm_analyze_urls ---")
|
313 |
+
test_urls_swarm = [
|
314 |
+
"https://modal.com/blog",
|
315 |
+
"https://gantry.io/blog",
|
316 |
+
"http://example.com/nonexistentpage"
|
317 |
+
]
|
318 |
+
swarm_result = swarm_analyze_urls.remote(test_urls_swarm, "Provide a brief summary of the main topic.")
|
319 |
+
print(json.dumps(swarm_result, indent=2))
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
modal
|
2 |
+
requests
|
3 |
+
gradio[mcp]
|
4 |
+
textstat
|
5 |
+
beautifulsoup4
|
6 |
+
lxml
|
7 |
+
openai
|