Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,9 @@ import logging
|
|
7 |
from datetime import datetime
|
8 |
import os
|
9 |
from huggingface_hub import HfApi, SpaceCard
|
|
|
|
|
|
|
10 |
|
11 |
# Configure logging
|
12 |
logging.basicConfig(level=logging.INFO)
|
@@ -14,14 +17,25 @@ logger = logging.getLogger(__name__)
|
|
14 |
|
15 |
# Constants
|
16 |
CSV_FILE = "repo_ids.csv"
|
17 |
-
CHATBOT_SYSTEM_PROMPT =
|
18 |
-
Your
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def read_csv_as_text(filename: str) -> pd.DataFrame:
|
22 |
"""Read CSV file and return as DataFrame."""
|
23 |
try:
|
24 |
-
return pd.read_csv(filename)
|
25 |
except Exception as e:
|
26 |
logger.error(f"Error reading CSV: {e}")
|
27 |
return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
|
@@ -29,7 +43,7 @@ def read_csv_as_text(filename: str) -> pd.DataFrame:
|
|
29 |
def write_repos_to_csv(repo_ids: List[str]) -> None:
|
30 |
"""Write repository IDs to CSV file."""
|
31 |
try:
|
32 |
-
with open(CSV_FILE, 'w', newline='') as f:
|
33 |
writer = csv.writer(f)
|
34 |
writer.writerow(["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
|
35 |
for repo_id in repo_ids:
|
@@ -37,74 +51,148 @@ def write_repos_to_csv(repo_ids: List[str]) -> None:
|
|
37 |
except Exception as e:
|
38 |
logger.error(f"Error writing to CSV: {e}")
|
39 |
|
40 |
-
def
|
41 |
-
"""
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
return [
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
def
|
51 |
"""Analyze a single repository."""
|
52 |
try:
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
70 |
except Exception as e:
|
71 |
logger.error(f"Error analyzing repo {repo_id}: {e}")
|
72 |
-
return f"Error analyzing {repo_id}", f"Error: {str(e)}"
|
73 |
|
74 |
-
def
|
75 |
-
"""
|
76 |
try:
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
except Exception as e:
|
79 |
-
logger.error(f"Error
|
80 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
def create_ui() -> gr.Blocks:
|
83 |
-
"""Create
|
|
|
|
|
84 |
with gr.Blocks(title="Hugging Face Repo Analyzer", theme=gr.themes.Soft()) as app:
|
85 |
gr.Markdown("# Hugging Face Repository Analyzer")
|
86 |
|
87 |
with gr.Row():
|
88 |
with gr.Column():
|
89 |
-
#
|
90 |
gr.Markdown("### Enter Repository IDs")
|
91 |
repo_id_input = gr.Textbox(
|
92 |
-
label="Enter
|
93 |
-
lines=
|
94 |
placeholder="repo1, repo2\nrepo3"
|
95 |
)
|
96 |
-
|
97 |
|
98 |
-
# Keyword Search Section
|
99 |
gr.Markdown("### Or Search by Keywords")
|
100 |
keyword_input = gr.Textbox(
|
101 |
label="Enter keywords to search",
|
102 |
-
lines=
|
103 |
placeholder="Enter keywords separated by commas"
|
104 |
)
|
105 |
search_btn = gr.Button("Search by Keywords", variant="primary")
|
106 |
|
107 |
-
# Status
|
108 |
status = gr.Textbox(label="Status", visible=True)
|
109 |
|
110 |
# Results Section
|
@@ -117,6 +205,10 @@ def create_ui() -> gr.Blocks:
|
|
117 |
content_output = gr.Textbox(label="Repository Content", lines=10)
|
118 |
summary_output = gr.Textbox(label="Analysis Summary", lines=5)
|
119 |
|
|
|
|
|
|
|
|
|
120 |
# Chat Section
|
121 |
chatbot = gr.Chatbot(
|
122 |
label="Chat with Assistant",
|
@@ -126,97 +218,69 @@ def create_ui() -> gr.Blocks:
|
|
126 |
msg = gr.Textbox(label="Message", placeholder="Ask about the repository...")
|
127 |
with gr.Row():
|
128 |
send_btn = gr.Button("Send", variant="primary")
|
129 |
-
|
130 |
|
131 |
-
def
|
132 |
-
"""Process
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
# Get first repo analysis
|
146 |
-
content, summary = analyze_repo(repo_ids[0])
|
147 |
-
|
148 |
-
return read_csv_as_text(CSV_FILE), f"Found {len(repo_ids)} repositories", content, summary
|
149 |
-
|
150 |
-
except Exception as e:
|
151 |
-
logger.error(f"Error processing repository IDs: {e}")
|
152 |
-
return pd.DataFrame(), f"Error: {str(e)}", "", ""
|
153 |
-
|
154 |
-
def process_keywords(text: str) -> Tuple[pd.DataFrame, str, str, str]:
|
155 |
-
"""Process keywords and return search results."""
|
156 |
-
try:
|
157 |
-
keywords = [k.strip() for k in re.split(r'[\n,]+', text) if k.strip()]
|
158 |
-
|
159 |
-
if not keywords:
|
160 |
-
return pd.DataFrame(), "No keywords provided", "", ""
|
161 |
-
|
162 |
-
repo_ids = []
|
163 |
-
for kw in keywords:
|
164 |
-
repo_ids.extend(search_top_spaces(kw, limit=5))
|
165 |
-
|
166 |
-
# Remove duplicates
|
167 |
-
repo_ids = list(dict.fromkeys(repo_ids))
|
168 |
-
|
169 |
-
if not repo_ids:
|
170 |
-
return pd.DataFrame(), "No repositories found for the given keywords", "", ""
|
171 |
-
|
172 |
-
# Update CSV
|
173 |
-
write_repos_to_csv(repo_ids)
|
174 |
-
|
175 |
-
# Get first repo analysis
|
176 |
-
content, summary = analyze_repo(repo_ids[0])
|
177 |
-
|
178 |
-
return read_csv_as_text(CSV_FILE), f"Found {len(repo_ids)} repositories", content, summary
|
179 |
-
|
180 |
-
except Exception as e:
|
181 |
-
logger.error(f"Error processing keywords: {e}")
|
182 |
-
return pd.DataFrame(), f"Error: {str(e)}", "", ""
|
183 |
|
184 |
-
def
|
185 |
-
"""Send message
|
186 |
if not message:
|
187 |
return history, ""
|
188 |
history.append({"role": "user", "content": message})
|
189 |
-
response = chat_with_user(message, history)
|
190 |
history.append({"role": "assistant", "content": response})
|
191 |
return history, ""
|
192 |
|
193 |
-
def
|
194 |
-
"""
|
195 |
-
|
|
|
|
|
|
|
|
|
196 |
|
197 |
# Event handlers
|
198 |
-
|
199 |
-
fn=
|
200 |
-
inputs=[repo_id_input],
|
201 |
-
outputs=[df_output, status
|
202 |
)
|
203 |
|
204 |
search_btn.click(
|
205 |
-
fn=
|
206 |
-
inputs=[keyword_input],
|
207 |
-
outputs=[df_output, status
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
)
|
209 |
|
210 |
send_btn.click(
|
211 |
-
fn=
|
212 |
-
inputs=[msg, chatbot],
|
213 |
outputs=[chatbot, msg]
|
214 |
)
|
215 |
|
216 |
-
|
217 |
-
fn=
|
218 |
-
inputs=[],
|
219 |
-
outputs=[
|
220 |
)
|
221 |
|
222 |
return app
|
|
|
7 |
from datetime import datetime
|
8 |
import os
|
9 |
from huggingface_hub import HfApi, SpaceCard
|
10 |
+
from analyzer import combine_repo_files_for_llm, analyze_combined_file, parse_llm_json_response
|
11 |
+
from hf_utils import download_space_repo, search_top_spaces
|
12 |
+
from chatbot_page import chat_with_user, extract_keywords_from_conversation
|
13 |
|
14 |
# Configure logging
|
15 |
logging.basicConfig(level=logging.INFO)
|
|
|
17 |
|
18 |
# Constants
|
19 |
CSV_FILE = "repo_ids.csv"
|
20 |
+
CHATBOT_SYSTEM_PROMPT = (
|
21 |
+
"You are a helpful assistant. Your goal is to help the user describe their ideal open-source repo. "
|
22 |
+
"Ask questions to clarify what they want, their use case, preferred language, features, etc. "
|
23 |
+
"When the user clicks 'End Chat', analyze the conversation and return about 5 keywords for repo search. "
|
24 |
+
"Return only the keywords as a comma-separated list."
|
25 |
+
)
|
26 |
+
|
27 |
+
class AppState:
|
28 |
+
"""State management for the application."""
|
29 |
+
def __init__(self):
|
30 |
+
self.repo_ids: List[str] = []
|
31 |
+
self.current_repo_idx: int = 0
|
32 |
+
self.generated_keywords: List[str] = []
|
33 |
+
self.chat_history: List[Dict[str, str]] = []
|
34 |
|
35 |
def read_csv_as_text(filename: str) -> pd.DataFrame:
|
36 |
"""Read CSV file and return as DataFrame."""
|
37 |
try:
|
38 |
+
return pd.read_csv(filename, dtype=str)
|
39 |
except Exception as e:
|
40 |
logger.error(f"Error reading CSV: {e}")
|
41 |
return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
|
|
|
43 |
def write_repos_to_csv(repo_ids: List[str]) -> None:
|
44 |
"""Write repository IDs to CSV file."""
|
45 |
try:
|
46 |
+
with open(CSV_FILE, 'w', newline='', encoding="utf-8") as f:
|
47 |
writer = csv.writer(f)
|
48 |
writer.writerow(["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
|
49 |
for repo_id in repo_ids:
|
|
|
51 |
except Exception as e:
|
52 |
logger.error(f"Error writing to CSV: {e}")
|
53 |
|
54 |
+
def process_repo_input(text: str, state: AppState) -> pd.DataFrame:
|
55 |
+
"""Process repository IDs input."""
|
56 |
+
if not text:
|
57 |
+
state.repo_ids = []
|
58 |
+
state.current_repo_idx = 0
|
59 |
+
return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
|
60 |
+
|
61 |
+
repo_ids = [repo.strip() for repo in re.split(r'[\n,]+', text) if repo.strip()]
|
62 |
+
state.repo_ids = repo_ids
|
63 |
+
state.current_repo_idx = 0
|
64 |
+
|
65 |
+
write_repos_to_csv(repo_ids)
|
66 |
+
return read_csv_as_text(CSV_FILE)
|
67 |
+
|
68 |
+
def keyword_search_and_update(keyword: str, state: AppState) -> pd.DataFrame:
|
69 |
+
"""Search for repositories by keywords."""
|
70 |
+
if not keyword:
|
71 |
+
return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
|
72 |
+
|
73 |
+
keyword_list = [k.strip() for k in re.split(r'[\n,]+', keyword) if k.strip()]
|
74 |
+
repo_ids = []
|
75 |
+
|
76 |
+
for kw in keyword_list:
|
77 |
+
repo_ids.extend(search_top_spaces(kw, limit=5))
|
78 |
+
|
79 |
+
# Remove duplicates while preserving order
|
80 |
+
seen = set()
|
81 |
+
unique_repo_ids = []
|
82 |
+
for rid in repo_ids:
|
83 |
+
if rid not in seen:
|
84 |
+
unique_repo_ids.append(rid)
|
85 |
+
seen.add(rid)
|
86 |
+
|
87 |
+
state.repo_ids = unique_repo_ids
|
88 |
+
state.current_repo_idx = 0
|
89 |
+
|
90 |
+
write_repos_to_csv(unique_repo_ids)
|
91 |
+
return read_csv_as_text(CSV_FILE)
|
92 |
|
93 |
+
def analyze_single_repo(repo_id: str) -> Tuple[str, str, Dict]:
|
94 |
"""Analyze a single repository."""
|
95 |
try:
|
96 |
+
download_space_repo(repo_id, local_dir="repo_files")
|
97 |
+
txt_path = combine_repo_files_for_llm()
|
98 |
+
|
99 |
+
with open(txt_path, "r", encoding="utf-8") as f:
|
100 |
+
combined_content = f.read()
|
101 |
+
|
102 |
+
llm_output = analyze_combined_file(txt_path)
|
103 |
+
last_start = llm_output.rfind('{')
|
104 |
+
last_end = llm_output.rfind('}')
|
105 |
+
|
106 |
+
final_json_str = llm_output[last_start:last_end+1] if last_start != -1 and last_end != -1 and last_end > last_start else llm_output
|
107 |
+
llm_json = parse_llm_json_response(final_json_str)
|
108 |
+
|
109 |
+
if isinstance(llm_json, dict) and "error" not in llm_json:
|
110 |
+
strengths = llm_json.get("strength", "")
|
111 |
+
weaknesses = llm_json.get("weaknesses", "")
|
112 |
+
summary = f"JSON extraction: SUCCESS\n\nStrengths:\n{strengths}\n\nWeaknesses:\n{weaknesses}"
|
113 |
+
else:
|
114 |
+
summary = f"JSON extraction: FAILED\nRaw: {llm_json.get('raw', '') if isinstance(llm_json, dict) else llm_json}"
|
115 |
+
|
116 |
+
return combined_content, summary, llm_json
|
117 |
+
|
118 |
except Exception as e:
|
119 |
logger.error(f"Error analyzing repo {repo_id}: {e}")
|
120 |
+
return f"Error analyzing {repo_id}", f"Error: {str(e)}", {"error": str(e)}
|
121 |
|
122 |
+
def update_csv_with_analysis(repo_id: str, analysis_results: Dict) -> pd.DataFrame:
|
123 |
+
"""Update CSV file with analysis results."""
|
124 |
try:
|
125 |
+
df = read_csv_as_text(CSV_FILE)
|
126 |
+
updated = False
|
127 |
+
|
128 |
+
for idx, row in df.iterrows():
|
129 |
+
if row["repo id"] == repo_id:
|
130 |
+
if isinstance(analysis_results, dict) and "error" not in analysis_results:
|
131 |
+
df.at[idx, "strength"] = analysis_results.get("strength", "")
|
132 |
+
df.at[idx, "weaknesses"] = analysis_results.get("weaknesses", "")
|
133 |
+
df.at[idx, "speciality"] = analysis_results.get("speciality", "")
|
134 |
+
df.at[idx, "relevance rating"] = analysis_results.get("relevance rating", "")
|
135 |
+
updated = True
|
136 |
+
break
|
137 |
+
|
138 |
+
if not updated and isinstance(analysis_results, dict) and "error" not in analysis_results:
|
139 |
+
new_row = {
|
140 |
+
"repo id": repo_id,
|
141 |
+
"strength": analysis_results.get("strength", ""),
|
142 |
+
"weaknesses": analysis_results.get("weaknesses", ""),
|
143 |
+
"speciality": analysis_results.get("speciality", ""),
|
144 |
+
"relevance rating": analysis_results.get("relevance rating", "")
|
145 |
+
}
|
146 |
+
df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True)
|
147 |
+
|
148 |
+
df.to_csv(CSV_FILE, index=False)
|
149 |
+
return df
|
150 |
+
|
151 |
except Exception as e:
|
152 |
+
logger.error(f"Error updating CSV: {e}")
|
153 |
+
return read_csv_as_text(CSV_FILE)
|
154 |
+
|
155 |
+
def show_combined_repo_and_llm(state: AppState) -> Tuple[str, str, pd.DataFrame]:
|
156 |
+
"""Show combined repo content and LLM analysis."""
|
157 |
+
if not state.repo_ids:
|
158 |
+
return "No repo ID available. Please submit repo IDs first.", "", pd.DataFrame()
|
159 |
+
|
160 |
+
if state.current_repo_idx >= len(state.repo_ids):
|
161 |
+
return "All repo IDs have been processed.", "", read_csv_as_text(CSV_FILE)
|
162 |
+
|
163 |
+
repo_id = state.repo_ids[state.current_repo_idx]
|
164 |
+
combined_content, summary, analysis_results = analyze_single_repo(repo_id)
|
165 |
+
df = update_csv_with_analysis(repo_id, analysis_results)
|
166 |
+
|
167 |
+
state.current_repo_idx += 1
|
168 |
+
return combined_content, summary, df
|
169 |
|
170 |
def create_ui() -> gr.Blocks:
|
171 |
+
"""Create the Gradio interface."""
|
172 |
+
state = gr.State(AppState())
|
173 |
+
|
174 |
with gr.Blocks(title="Hugging Face Repo Analyzer", theme=gr.themes.Soft()) as app:
|
175 |
gr.Markdown("# Hugging Face Repository Analyzer")
|
176 |
|
177 |
with gr.Row():
|
178 |
with gr.Column():
|
179 |
+
# Input Section
|
180 |
gr.Markdown("### Enter Repository IDs")
|
181 |
repo_id_input = gr.Textbox(
|
182 |
+
label="Enter repo IDs (comma or newline separated)",
|
183 |
+
lines=5,
|
184 |
placeholder="repo1, repo2\nrepo3"
|
185 |
)
|
186 |
+
submit_btn = gr.Button("Submit Repository IDs", variant="primary")
|
187 |
|
|
|
188 |
gr.Markdown("### Or Search by Keywords")
|
189 |
keyword_input = gr.Textbox(
|
190 |
label="Enter keywords to search",
|
191 |
+
lines=3,
|
192 |
placeholder="Enter keywords separated by commas"
|
193 |
)
|
194 |
search_btn = gr.Button("Search by Keywords", variant="primary")
|
195 |
|
|
|
196 |
status = gr.Textbox(label="Status", visible=True)
|
197 |
|
198 |
# Results Section
|
|
|
205 |
content_output = gr.Textbox(label="Repository Content", lines=10)
|
206 |
summary_output = gr.Textbox(label="Analysis Summary", lines=5)
|
207 |
|
208 |
+
with gr.Row():
|
209 |
+
analyze_btn = gr.Button("Analyze Next Repository", variant="primary")
|
210 |
+
finish_btn = gr.Button("Finish Analysis", variant="secondary")
|
211 |
+
|
212 |
# Chat Section
|
213 |
chatbot = gr.Chatbot(
|
214 |
label="Chat with Assistant",
|
|
|
218 |
msg = gr.Textbox(label="Message", placeholder="Ask about the repository...")
|
219 |
with gr.Row():
|
220 |
send_btn = gr.Button("Send", variant="primary")
|
221 |
+
end_chat_btn = gr.Button("End Chat", variant="secondary")
|
222 |
|
223 |
+
def process_repo_input_with_status(text: str, state: AppState) -> Tuple[pd.DataFrame, str]:
|
224 |
+
"""Process repo input with status update."""
|
225 |
+
df = process_repo_input(text, state)
|
226 |
+
return df, f"Found {len(state.repo_ids)} repositories"
|
227 |
+
|
228 |
+
def keyword_search_with_status(keyword: str, state: AppState) -> Tuple[pd.DataFrame, str]:
|
229 |
+
"""Search keywords with status update."""
|
230 |
+
df = keyword_search_and_update(keyword, state)
|
231 |
+
return df, f"Found {len(state.repo_ids)} repositories"
|
232 |
+
|
233 |
+
def analyze_with_status(state: AppState) -> Tuple[str, str, pd.DataFrame, str]:
|
234 |
+
"""Analyze with status update."""
|
235 |
+
content, summary, df = show_combined_repo_and_llm(state)
|
236 |
+
return content, summary, df, f"Analyzing repository {state.current_repo_idx} of {len(state.repo_ids)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
+
def send_message_with_status(message: str, history: List[Dict[str, str]], state: AppState) -> Tuple[List[Dict[str, str]], str]:
|
239 |
+
"""Send message with status update."""
|
240 |
if not message:
|
241 |
return history, ""
|
242 |
history.append({"role": "user", "content": message})
|
243 |
+
response = chat_with_user(message, history, CHATBOT_SYSTEM_PROMPT)
|
244 |
history.append({"role": "assistant", "content": response})
|
245 |
return history, ""
|
246 |
|
247 |
+
def end_chat_with_status(history: List[Dict[str, str]], state: AppState) -> Tuple[List[str], str]:
|
248 |
+
"""End chat and extract keywords."""
|
249 |
+
if not history:
|
250 |
+
return [], "No chat history to analyze"
|
251 |
+
keywords = extract_keywords_from_conversation(history)
|
252 |
+
state.generated_keywords = keywords
|
253 |
+
return keywords, "Keywords extracted from conversation"
|
254 |
|
255 |
# Event handlers
|
256 |
+
submit_btn.click(
|
257 |
+
fn=process_repo_input_with_status,
|
258 |
+
inputs=[repo_id_input, state],
|
259 |
+
outputs=[df_output, status]
|
260 |
)
|
261 |
|
262 |
search_btn.click(
|
263 |
+
fn=keyword_search_with_status,
|
264 |
+
inputs=[keyword_input, state],
|
265 |
+
outputs=[df_output, status]
|
266 |
+
)
|
267 |
+
|
268 |
+
analyze_btn.click(
|
269 |
+
fn=analyze_with_status,
|
270 |
+
inputs=[state],
|
271 |
+
outputs=[content_output, summary_output, df_output, status]
|
272 |
)
|
273 |
|
274 |
send_btn.click(
|
275 |
+
fn=send_message_with_status,
|
276 |
+
inputs=[msg, chatbot, state],
|
277 |
outputs=[chatbot, msg]
|
278 |
)
|
279 |
|
280 |
+
end_chat_btn.click(
|
281 |
+
fn=end_chat_with_status,
|
282 |
+
inputs=[chatbot, state],
|
283 |
+
outputs=[gr.Textbox(label="Extracted Keywords"), status]
|
284 |
)
|
285 |
|
286 |
return app
|