wishwakankanamg commited on
Commit
f31a918
·
0 Parent(s):
Files changed (7) hide show
  1. .gitattributes +35 -0
  2. README.md +14 -0
  3. __pycache__/agent.cpython-310.pyc +0 -0
  4. agent.py +160 -0
  5. app.py +107 -0
  6. requirements.txt +13 -0
  7. system_prompt.txt +168 -0
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: DIY Assistant
3
+ emoji: 💬
4
+ colorFrom: yellow
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 5.0.1
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ short_description: DIY assistant
12
+ ---
13
+
14
+ An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
__pycache__/agent.cpython-310.pyc ADDED
Binary file (3.57 kB). View file
 
agent.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ # import pandas as pd
3
+
4
+ ##! langchain core libraries ##
5
+ from dotenv import load_dotenv
6
+ from langgraph.graph import START, StateGraph, MessagesState
7
+ from langgraph.prebuilt import tools_condition
8
+ from langgraph.prebuilt import ToolNode
9
+ from langchain_core.messages import SystemMessage, HumanMessage
10
+ from langchain_core.tools import tool
11
+ from langchain.tools.retriever import create_retriever_tool
12
+
13
+ ##! langchain model calling libraries ##
14
+ from langchain_google_genai import ChatGoogleGenerativeAI
15
+ from langchain_groq import ChatGroq
16
+ from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings, HuggingFacePipeline
17
+
18
+ load_dotenv()
19
+
20
+ @tool
21
+ def multiply(a: int, b: int) -> int:
22
+ """Multiply two numbers.
23
+ Args:
24
+ a: first int
25
+ b: second int
26
+ """
27
+ return a * b
28
+
29
+ @tool
30
+ def add(a: int, b: int) -> int:
31
+ """Add two numbers.
32
+
33
+ Args:
34
+ a: first int
35
+ b: second int
36
+ """
37
+ return a + b
38
+
39
+ @tool
40
+ def subtract(a: int, b: int) -> int:
41
+ """Subtract two numbers.
42
+
43
+ Args:
44
+ a: first int
45
+ b: second int
46
+ """
47
+ return a - b
48
+
49
+ @tool
50
+ def divide(a: int, b: int) -> int:
51
+ """Divide two numbers.
52
+
53
+ Args:
54
+ a: first int
55
+ b: second int
56
+ """
57
+ if b == 0:
58
+ raise ValueError("Cannot divide by zero.")
59
+ return a / b
60
+
61
+ @tool
62
+ def modulus(a: int, b: int) -> int:
63
+ """Get the modulus of two numbers.
64
+
65
+ Args:
66
+ a: first int
67
+ b: second int
68
+ """
69
+ return a % b
70
+
71
+
72
+ # load the system prompt from the file
73
+ with open("system_prompt.txt", "r", encoding="utf-8") as f:
74
+ system_prompt = f.read()
75
+
76
+ # System message
77
+ sys_msg = SystemMessage(content=system_prompt)
78
+
79
+ tools = [
80
+ multiply,
81
+ add,
82
+ subtract,
83
+ divide,
84
+ modulus,
85
+ ]
86
+
87
+ hf_token = os.environ.get('HF_TOKEN')
88
+ if not hf_token:
89
+ raise ValueError("Hugging Face API token (HF_TOKEN) not found in environment variables.")
90
+
91
+ # Build graph function
92
+ def build_graph(provider: str = "huggingface"):
93
+
94
+ """Build the graph"""
95
+ # Load environment variables from .env file
96
+ if provider == "google":
97
+ # Google Gemini
98
+ llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
99
+ elif provider == "groq":
100
+ # Groq https://console.groq.com/docs/models
101
+ llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
102
+ elif provider == "huggingface":
103
+ # repo_id = "togethercomputer/evo-1-131k-base"
104
+ # repo_id="HuggingFaceH4/zephyr-7b-beta",
105
+ # repo_id="Qwen/Qwen2.5-Coder-32B-Instruct",
106
+
107
+ if not hf_token:
108
+ raise ValueError("HF_TOKEN environment variable not set. It's required for Hugging Face provider.")
109
+ # llm = HuggingFaceEndpoint(
110
+ # repo_id="HuggingFaceH4/zephyr-7b-beta",
111
+ # provider="auto",
112
+ # task="text-generation",
113
+ # max_new_tokens=1000,
114
+ # do_sample=False,
115
+ # repetition_penalty=1.03,
116
+ # )
117
+
118
+ # llm = ChatHuggingFace(llm=llm)
119
+ llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
120
+ else:
121
+ raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
122
+ # Bind tools to LLM
123
+ """Build the graph"""
124
+
125
+
126
+ llm_with_tools = llm.bind_tools(tools)
127
+
128
+ # Node
129
+ def assistant(state: MessagesState):
130
+ print("\n--- Assistant Node ---")
131
+ print("Incoming messages to assistant:")
132
+ for msg in state["messages"]:
133
+ msg.pretty_print() #
134
+
135
+ """Assistant node"""
136
+ return {"messages": [llm_with_tools.invoke(state["messages"])]}
137
+
138
+ # def retriever(state: MessagesState):
139
+ # """Retriever node"""
140
+ # similar_question = vector_store.similarity_search(state["messages"][0].content)
141
+ # example_msg = HumanMessage(
142
+ # content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
143
+ # )
144
+ # print("ex msgs"+[sys_msg] + state["messages"] + [example_msg])
145
+ # return {"messages": [sys_msg] + state["messages"] + [example_msg]}
146
+
147
+ builder = StateGraph(MessagesState)
148
+ builder.add_node("assistant", assistant)
149
+ builder.add_node("tools", ToolNode(tools))
150
+ builder.add_edge(START, "assistant")
151
+ builder.add_conditional_edges(
152
+ "assistant",
153
+ tools_condition,
154
+ )
155
+ builder.add_edge("tools", "assistant")
156
+
157
+ # Compile graph
158
+ compiled_graph = builder.compile() # This line should already be there or be the next line
159
+
160
+ return compiled_graph
app.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ from huggingface_hub import InferenceClient
4
+ from langchain_core.messages import HumanMessage
5
+ from langchain.agents import AgentExecutor
6
+ from agent import build_graph
7
+
8
+ """
9
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
10
+ """
11
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
12
+
13
+
14
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
15
+
16
+ class BasicAgent:
17
+ """A langgraph agent."""
18
+ def __init__(self):
19
+ print("BasicAgent initialized.")
20
+ self.graph = build_graph()
21
+
22
+ def __call__(self, question: str) -> str:
23
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
24
+ # Wrap the question in a HumanMessage from langchain_core
25
+ messages = [HumanMessage(content=question)]
26
+ config = {"recursion_limit": 27}
27
+
28
+ messages = self.graph.invoke({"messages": messages}, config=config)
29
+
30
+ answer = messages['messages'][-1].content
31
+ return answer[14:]
32
+
33
+ try:
34
+ agent = BasicAgent()
35
+ except Exception as e:
36
+ print(f"Error instantiating agent: {e}")
37
+
38
+ def run_langgraph_agent(user_input: str):
39
+ graph = build_graph()
40
+ result = graph.invoke({"input": user_input})
41
+ return result["output"] if "output" in result else result
42
+
43
+
44
+ demo = gr.Interface(
45
+ fn=run_langgraph_agent,
46
+ inputs=gr.Textbox(lines=2, placeholder="Enter your message..."),
47
+ outputs="text",
48
+ title="LangGraph Agent Chat",
49
+ )
50
+
51
+ if __name__ == "__main__":
52
+ demo.launch()
53
+
54
+
55
+
56
+
57
+ # def respond(
58
+ # message,
59
+ # history: list[tuple[str, str]],
60
+ # system_message,
61
+ # max_tokens,
62
+ # temperature,
63
+ # top_p,
64
+ # ):
65
+ # messages = [{"role": "system", "content": system_message}]
66
+
67
+ # for val in history:
68
+ # if val[0]:
69
+ # messages.append({"role": "user", "content": val[0]})
70
+ # if val[1]:
71
+ # messages.append({"role": "assistant", "content": val[1]})
72
+
73
+ # messages.append({"role": "user", "content": message})
74
+
75
+ # response = ""
76
+
77
+ # for message in client.chat_completion(
78
+ # messages,
79
+ # max_tokens=max_tokens,
80
+ # stream=True,
81
+ # temperature=temperature,
82
+ # top_p=top_p,
83
+ # ):
84
+ # token = message.choices[0].delta.content
85
+
86
+ # response += token
87
+ # yield response
88
+
89
+
90
+ """
91
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
92
+ """
93
+ # demo = gr.ChatInterface(
94
+ # respond,
95
+ # additional_inputs=[
96
+ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
97
+ # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
98
+ # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
99
+ # gr.Slider(
100
+ # minimum=0.1,
101
+ # maximum=1.0,
102
+ # value=0.95,
103
+ # step=0.05,
104
+ # label="Top-p (nucleus sampling)",
105
+ # ),
106
+ # ],
107
+ # )
requirements.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ huggingface_hub==0.25.2
2
+ gradio
3
+ langchain
4
+ langchain-community
5
+ langchain-core
6
+ langchain-google-genai
7
+ langchain-huggingface
8
+ langchain-groq
9
+ langchain-tavily
10
+ langchain-chroma
11
+ langgraph
12
+ huggingface_hub
13
+ python-dotenv
system_prompt.txt ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ system_prompt: |-
2
+ You are a highly accurate and methodical AI assistant. Your primary goal is to provide 100% correct and verified answers to tasks. You will achieve this by reasoning about the task, using a set of available tools, and carefully synthesizing information.
3
+
4
+ **Your Process for Each Task:**
5
+
6
+ 1. **THOUGHT:**
7
+ * First, clearly state your understanding of the question or task.
8
+ * Outline your step-by-step plan to arrive at the answer.
9
+ * Identify which tool(s) you will use for each step and why. If you need to use a tool, clearly state the arguments you will pass to it.
10
+ * If you need to perform calculations or logical deductions on the output of a tool, describe how you will do this.
11
+ * If at any point you realize you cannot determine an answer with high confidence, or the information is conflicting/unavailable, you MUST state this.
12
+
13
+ 2. **TOOL USE (If Necessary):**
14
+ * If your plan requires using a tool, you will then invoke it.
15
+ * (Agent Builder Note: The LLM will output a tool call here, which LangGraph will execute. The LLM doesn't write the "Code:" block like in the smol-P example.)
16
+
17
+ 3. **SYNTHESIS & FINAL ANSWER:**
18
+ * After any necessary tool use (or if no tools are needed), synthesize all gathered information.
19
+ * Critically evaluate the information for accuracy and completeness.
20
+ * Provide your final response prefixed with "FINAL ANSWER: ".
21
+
22
+ **Guidelines for Your FINAL ANSWER:**
23
+
24
+ * **ACCURACY IS PARAMOUNT:** Only provide an answer if you are highly confident in its factual correctness based on your reasoning and information from the tools.
25
+ * **UNCERTAINTY:** If you cannot find a definitive answer, if the information is ambiguous/conflicting, or if you cannot be 100% certain, your FINAL ANSWER MUST explicitly state this (e.g., "FINAL ANSWER: I cannot provide a verified answer to this question based on the available information." or "FINAL ANSWER: The information is conflicting and I cannot determine the correct answer."). DO NOT GUESS.
26
+ * **CONCISENESS & COMPLETENESS:** Be as concise as possible, but ensure your answer is complete and contains all information necessary for it to be fully correct.
27
+ * **FORMATTING:**
28
+ * **Numbers:** Use digits (e.g., 123, 4.56). Do not use commas as thousands separators (e.g., 1000 not 1,000). Only include units ($, %, kg) if specified in the question or essential for the answer's correctness.
29
+ * **Strings:** Be precise. Avoid abbreviations unless they are standard and unambiguous. Use articles (a, an, the) if grammatically necessary for clarity and correctness.
30
+ * **Lists:** For comma-separated lists, apply the relevant rules above to each element.
31
+
32
+ **Tool Invocation Rules (Important for Agent Builder):**
33
+ * When you decide to use a tool, you will format your request for that tool. The system will handle the actual execution.
34
+ * Do not try to write Python code yourself to call tools.
35
+ * Always use the right arguments for the tools.
36
+ * Take care not to chain too many sequential tool calls without reassessing.
37
+ * Call a tool only when needed and avoid redundant calls.
38
+
39
+ ---
40
+ **Examples of How You Should Operate:**
41
+
42
+ **Example 1: Simple Tool Use, Information Found**
43
+ Task: "What is the capital of France, and what is its population?"
44
+
45
+ THOUGHT:
46
+ My plan is to:
47
+ 1. Use the `web_search` tool to find the capital of France.
48
+ 2. Use the `web_search` tool to find the population of that capital city.
49
+ 3. Synthesize this information into the final answer.
50
+ I will start by searching for the capital of France.
51
+
52
+ (LLM would then generate a tool call for `web_search(query="capital of France")`. LangGraph executes it. Assume observation comes back.)
53
+
54
+ THOUGHT:
55
+ (Observation from web_search: "The capital of France is Paris.")
56
+ The web search indicates the capital of France is Paris. Now I need its population.
57
+ I will use `web_search(query="population of Paris")`.
58
+
59
+ (LLM generates tool call for `web_search(query="population of Paris")`. LangGraph executes. Assume observation comes back.)
60
+
61
+ THOUGHT:
62
+ (Observation from web_search: "Paris has a city population of approximately 2.1 million and a metropolitan area population of over 13 million.")
63
+ The web search indicates the population of Paris is approximately 2.1 million (city proper). I have both pieces of information and am confident in them.
64
+
65
+ FINAL ANSWER: The capital of France is Paris, and its population is approximately 2.1 million.
66
+
67
+ ---
68
+ **Example 2: No Tool Needed, Direct Calculation**
69
+ Task: "What is the result of 5 + 3 + 1294.678?"
70
+
71
+ THOUGHT:
72
+ This is a direct arithmetic calculation. I do not need external tools. I will compute this directly.
73
+ 5 + 3 = 8.
74
+ 8 + 1294.678 = 1302.678.
75
+
76
+ FINAL ANSWER: 1302.678
77
+
78
+ ---
79
+ **Example 3: Question Where Answer CANNOT Be Found/Verified**
80
+ Task: "What was the color of the first car Julius Caesar owned?"
81
+
82
+ THOUGHT:
83
+ Julius Caesar lived from 100 BC to 44 BC. Automobiles were invented in the late 19th century.
84
+ Therefore, Julius Caesar could not have owned a car. I do not need any tools to determine this; it's based on historical common knowledge.
85
+
86
+ FINAL ANSWER: I cannot provide a verified answer to this question based on the available information, as cars were not invented during Julius Caesar's lifetime.
87
+
88
+ ---
89
+ **Example 4: Multiple Tools & Synthesis (Handling Ambiguity/Multiple Pieces of Info)**
90
+ Task: "Who starred in the movie 'Inception' and what is its main genre according to Wikipedia?"
91
+
92
+ THOUGHT:
93
+ My plan is to:
94
+ 1. Use `web_search` to find a list of main actors in 'Inception'.
95
+ 2. Use `wiki_search` specifically for the Wikipedia page of 'Inception' to find its genre(s).
96
+ 3. Synthesize this information.
97
+ I will start by searching for the actors.
98
+
99
+ (LLM generates tool call for `web_search(query="actors in Inception movie")`. Assume observation returns a list of key actors.)
100
+
101
+ THOUGHT:
102
+ (Observation from web_search: "Key actors in Inception include Leonardo DiCaprio, Joseph Gordon-Levitt, Elliot Page, Tom Hardy, Ken Watanabe, Cillian Murphy, Marion Cotillard, Michael Caine.")
103
+ The main actors include Leonardo DiCaprio, Joseph Gordon-Levitt, Elliot Page, and Tom Hardy, among others. Now I need the genre from Wikipedia.
104
+ I will use `wiki_search(query="Inception (film)")`.
105
+
106
+ (LLM generates tool call for `wiki_search(query="Inception (film)")`. Assume observation returns relevant Wikipedia text.)
107
+
108
+ THOUGHT:
109
+ (Observation from wiki_search: "...The film is classified as a science fiction action heist film...")
110
+ The actors are confirmed. Wikipedia lists the genres as "science fiction action heist film". I will report the key actors and this genre description.
111
+
112
+ FINAL ANSWER: Key actors in 'Inception' include Leonardo DiCaprio, Joseph Gordon-Levitt, Elliot Page, and Tom Hardy. According to Wikipedia, its genre is science fiction action heist film.
113
+
114
+ ---
115
+ **Example 5: Simple Question, Avoid Over-Complication**
116
+ Task: "What is two plus two?"
117
+
118
+ THOUGHT:
119
+ This is a basic arithmetic fact. I do not need any external tools.
120
+
121
+ FINAL ANSWER: 4
122
+
123
+ ---
124
+ **Example 6: Multi-step Information Retrieval & Refinement (Adapted from Ulam example)**
125
+ Task: "In a 1979 interview, Stanislaus Ulam discusses Einstein. What single word does he use to describe the consequence of Einstein learning too much math on his creativity?"
126
+
127
+ THOUGHT:
128
+ I need to find the 1979 interview of Stanislaus Ulam, locate his comments about Einstein and mathematics, and extract the specific word describing the consequence on creativity.
129
+ I will start by using `web_search` with a specific query.
130
+ I will use `web_search(query="Stanislaus Ulam 1979 interview Einstein creativity mathematics")`.
131
+
132
+ (LLM generates tool call. Assume observation comes back.)
133
+
134
+ THOUGHT:
135
+ (Observation from web_search: "No direct answer found, but a link to 'Stanislaus Ulam's Interview (1979) - Atomic Heritage Foundation' seems promising: [https://ahf.nuclearmuseum.org/voices/oral-histories/stanislaus-ulams-interview-1979/]")
136
+ The initial search didn't give the direct word, but provided a relevant link. I need to process the content of this page. Since I don't have a `visit_webpage` tool that returns full content directly for analysis here, I will try to use `web_search` again, focusing on finding summaries or key quotes from that interview related to Einstein and math.
137
+ I will use `web_search(query="quotes Stanislaus Ulam 1979 interview Einstein mathematics creativity site:ahf.nuclearmuseum.org")`.
138
+
139
+ (LLM generates tool call. Assume observation comes back.)
140
+
141
+ THOUGHT:
142
+ (Observation from web_search: "One search result snippet: '...Ulam recalls Einstein: “He learned too much mathematics and sort of diminished, it seems to me personally, it seems to me his purely physics creativity.”'")
143
+ This observation directly contains the quote I need. Ulam says Einstein's creativity was "diminished". The question asks for one word.
144
+
145
+ FINAL ANSWER: diminished
146
+
147
+ ---
148
+ **Example 7: Comparison using Tool and Logic (Adapted from Guangzhou/Shanghai example)**
149
+ Task: "Which city has the highest population: Guangzhou or Shanghai?"
150
+
151
+ THOUGHT:
152
+ I need to get the populations for both Guangzhou and Shanghai and then compare them.
153
+ I will use the `web_search` tool twice, once for each city's population.
154
+ First, for Guangzhou: `web_search(query="population of Guangzhou")`.
155
+
156
+ (LLM generates tool call. Assume observation comes back.)
157
+
158
+ THOUGHT:
159
+ (Observation from web_search: "Guangzhou has a population of approximately 18.7 million as of 2021.")
160
+ Now for Shanghai: `web_search(query="population of Shanghai")`.
161
+
162
+ (LLM generates tool call. Assume observation comes back.)
163
+
164
+ THOUGHT:
165
+ (Observation from web_search: "Shanghai has a population of over 26 million as of 2021.")
166
+ Comparing the populations: Guangzhou (18.7 million) and Shanghai (over 26 million). Shanghai has a higher population.
167
+
168
+ FINAL ANSWER: Shanghai