Spaces:
Runtime error
Runtime error
File size: 36,759 Bytes
807e22d 10509b9 807e22d 10509b9 807e22d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 |
import os
import logging
import logging.config
from typing import Any
from uuid import uuid4, UUID
import json
import sys
import gradio as gr
from dotenv import load_dotenv
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage, ToolMessage
from langgraph.types import RunnableConfig
from pydantic import BaseModel
from pathlib import Path
import subprocess
# def update_repo():
# try:
# subprocess.run(["git", "fetch", "origin"], check=True)
# subprocess.run(["git", "reset", "--hard", "origin/main"], check=True)
# subprocess.run([sys.executable, "-m", "pip", "install", "-r", "requirements.txt"], check=True)
# subprocess.run([sys.executable, "app.py"], check=True)
# except Exception as e:
# print(f"Git update failed: {e}")
# update_repo()
load_dotenv()
# There are tools set here dependent on environment variables
from graph import graph, weak_model, search_enabled # noqa
FOLLOWUP_QUESTION_NUMBER = 3
TRIM_MESSAGE_LENGTH = 16 # Includes tool messages
USER_INPUT_MAX_LENGTH = 10000 # Characters
# We need the same secret for data persistance
# If you store sensitive data, you should store your secret in .env
BROWSER_STORAGE_SECRET = "itsnosecret"
with open('logging-config.json', 'r') as fh:
config = json.load(fh)
logging.config.dictConfig(config)
logger = logging.getLogger(__name__)
def load_initial_greeting(filepath="greeting_prompt.txt") -> str:
"""
Loads the initial greeting message from a specified text file.
"""
try:
with open(filepath, "r", encoding="utf-8") as f:
return f.read().strip()
except FileNotFoundError:
# Use a logger if you have one configured, otherwise print
# logger.warning(f"Warning: Prompt file '{filepath}' not found.")
print(f"Warning: Prompt file '{filepath}' not found. Using default.")
return "Welcome to the application! (Default Greeting)"
async def chat_fn(user_input: str, history: dict, input_graph_state: dict, uuid: UUID, prompt: str, search_enabled: bool, download_website_text_enabled: bool):
"""
Args:
user_input (str): The user's input message
history (dict): The history of the conversation in gradio
input_graph_state (dict): The current state of the graph. This includes tool call history
uuid (UUID): The unique identifier for the current conversation. This can be used in conjunction with langgraph or for memory
prompt (str): The system prompt
Yields:
str: The output message
dict|Any: The final state of the graph
bool|Any: Whether to trigger follow up questions
We do not use gradio history in the graph since we want the ToolMessage in the history
ordered properly. GraphProcessingState.messages is used as history instead
"""
try:
logger.info(f"Prompt: {prompt}")
input_graph_state["tools_enabled"] = {
"download_website_text": download_website_text_enabled,
"tavily_search_results_json": search_enabled,
}
if prompt:
input_graph_state["prompt"] = prompt
if input_graph_state.get("awaiting_human_input"):
input_graph_state["messages"].append(
ToolMessage(
tool_call_id=input_graph_state.pop("human_assistance_tool_id"),
content=user_input
)
)
input_graph_state["awaiting_human_input"] = False
else:
# New user message
if "messages" not in input_graph_state:
input_graph_state["messages"] = []
input_graph_state["messages"].append(
HumanMessage(user_input[:USER_INPUT_MAX_LENGTH])
)
input_graph_state["messages"] = input_graph_state["messages"][-TRIM_MESSAGE_LENGTH:]
config = RunnableConfig(
recursion_limit=20,
run_name="user_chat",
configurable={"thread_id": uuid}
)
output: str = ""
final_state: dict | Any = {}
waiting_output_seq: list[str] = []
async for stream_mode, chunk in graph.astream(
input_graph_state,
config=config,
stream_mode=["values", "messages"],
):
if stream_mode == "values":
final_state = chunk
last_message = chunk["messages"][-1]
if hasattr(last_message, "tool_calls"):
for msg_tool_call in last_message.tool_calls:
tool_name: str = msg_tool_call['name']
if tool_name == "tavily_search_results_json":
query = msg_tool_call['args']['query']
waiting_output_seq.append(f"Searching for '{query}'...")
yield "\n".join(waiting_output_seq), gr.skip(), gr.skip()
# download_website_text is the name of the function defined in graph.py
elif tool_name == "download_website_text":
url = msg_tool_call['args']['url']
waiting_output_seq.append(f"Downloading text from '{url}'...")
yield "\n".join(waiting_output_seq), gr.skip(), gr.skip()
elif tool_name == "human_assistance":
query = msg_tool_call["args"]["query"]
waiting_output_seq.append(f"π€: {query}")
# Save state to resume after user provides input
input_graph_state["awaiting_human_input"] = True
input_graph_state["human_assistance_tool_id"] = msg_tool_call["id"]
# Indicate that human input is needed
yield "\n".join(waiting_output_seq), input_graph_state, gr.skip(), True
return # Pause execution, resume in next call
else:
waiting_output_seq.append(f"Running {tool_name}...")
yield "\n".join(waiting_output_seq), gr.skip(), gr.skip()
elif stream_mode == "messages":
msg, metadata = chunk
# print("output: ", msg, metadata)
# assistant_node is the name we defined in the langgraph graph
if metadata.get('langgraph_node') == "assistant_node": # Use .get for safety
current_chunk_text = ""
if isinstance(msg.content, str):
current_chunk_text = msg.content
elif isinstance(msg.content, list):
for block in msg.content:
if isinstance(block, dict) and block.get("type") == "text":
current_chunk_text += block.get("text", "")
elif isinstance(block, str): # Fallback if content is list of strings
current_chunk_text += block
if current_chunk_text: # Only add and yield if there's actually text
output += current_chunk_text
yield output, gr.skip(), gr.skip()
# Trigger for asking follow up questions
# + store the graph state for next iteration
# yield output, dict(final_state), gr.skip()
yield output + " ", dict(final_state), True
except Exception:
logger.exception("Exception occurred")
user_error_message = "There was an error processing your request. Please try again."
yield user_error_message, gr.skip(), False
def clear():
return dict(), uuid4()
class FollowupQuestions(BaseModel):
"""Model for langchain to use for structured output for followup questions"""
questions: list[str]
async def populate_followup_questions(end_of_chat_response: bool, messages: dict[str, str], uuid: UUID):
"""
This function gets called a lot due to the asynchronous nature of streaming
Only populate followup questions if streaming has completed and the message is coming from the assistant
"""
if not end_of_chat_response or not messages or messages[-1]["role"] != "assistant":
return *[gr.skip() for _ in range(FOLLOWUP_QUESTION_NUMBER)], False
config = RunnableConfig(
run_name="populate_followup_questions",
configurable={"thread_id": uuid}
)
weak_model_with_config = weak_model.with_config(config)
follow_up_questions = await weak_model_with_config.with_structured_output(FollowupQuestions).ainvoke([
("system", f"suggest {FOLLOWUP_QUESTION_NUMBER} followup questions for the user to ask the assistant. Refrain from asking personal questions."),
*messages,
])
if len(follow_up_questions.questions) != FOLLOWUP_QUESTION_NUMBER:
raise ValueError("Invalid value of followup questions")
buttons = []
for i in range(FOLLOWUP_QUESTION_NUMBER):
buttons.append(
gr.Button(follow_up_questions.questions[i], visible=True, elem_classes="chat-tab"),
)
return *buttons, False
async def summarize_chat(end_of_chat_response: bool, messages: dict, sidebar_summaries: dict, uuid: UUID):
"""Summarize chat for tab names"""
# print("\n------------------------")
# print("not end_of_chat_response", not end_of_chat_response)
# print("not messages", not messages)
# if messages:
# print("messages[-1][role] != assistant", messages[-1]["role"] != "assistant")
# print("isinstance(sidebar_summaries, type(lambda x: x))", isinstance(sidebar_summaries, type(lambda x: x)))
# print("uuid in sidebar_summaries", uuid in sidebar_summaries)
should_return = (
not end_of_chat_response or
not messages or
messages[-1]["role"] != "assistant" or
# This is a bug with gradio
isinstance(sidebar_summaries, type(lambda x: x)) or
# Already created summary
uuid in sidebar_summaries
)
if should_return:
return gr.skip(), gr.skip()
filtered_messages = []
for msg in messages:
if isinstance(msg, dict) and msg.get("content") and msg["content"].strip():
filtered_messages.append(msg)
# If we don't have any valid messages after filtering, provide a default summary
if not filtered_messages:
if uuid not in sidebar_summaries:
sidebar_summaries[uuid] = "Chat History"
return sidebar_summaries, False
config = RunnableConfig(
run_name="summarize_chat",
configurable={"thread_id": uuid}
)
try:
weak_model_with_config = weak_model.with_config(config)
summary_response = await weak_model_with_config.ainvoke([
("system", "summarize this chat in 7 tokens or less. Refrain from using periods"),
*filtered_messages,
])
if uuid not in sidebar_summaries:
sidebar_summaries[uuid] = summary_response.content
except Exception as e:
logger.error(f"Error summarizing chat: {e}")
# Provide a fallback summary if an error occurs
if uuid not in sidebar_summaries:
sidebar_summaries[uuid] = "Previous Chat"
return sidebar_summaries, False
async def new_tab(uuid, gradio_graph, messages, tabs, prompt, sidebar_summaries):
new_uuid = uuid4()
new_graph = {}
if uuid not in sidebar_summaries:
sidebar_summaries, _ = await summarize_chat(True, messages, sidebar_summaries, uuid)
tabs[uuid] = {
"graph": gradio_graph,
"messages": messages,
"prompt": prompt,
}
suggestion_buttons = []
for _ in range(FOLLOWUP_QUESTION_NUMBER):
suggestion_buttons.append(gr.Button(visible=False))
new_messages = {}
# --- MODIFICATION FOR GREETING IN EVERY NEW CHAT ---
greeting_text = load_initial_greeting() # Get the greeting
# `gr.Chatbot` expects a list of tuples or list of dicts.
# For `type="messages"`, it's list of dicts: [{"role": "assistant", "content": "Hello"}]
# Or list of tuples: [(None, "Hello")]
# Let's assume your chatbot is configured for list of tuples (None, bot_message) for initial messages
new_chat_messages_for_display = [{"role": "assistant", "content": greeting_text}]
# If your chat_interface.chatbot_value expects list of dicts:
# new_messages_history = [{"role": "assistant", "content": greeting_text}]
# --- END MODIFICATION ---
new_prompt = "You are a helpful assistant."
return new_uuid, new_graph, new_chat_messages_for_display, tabs, new_prompt, sidebar_summaries, *suggestion_buttons
def switch_tab(selected_uuid, tabs, gradio_graph, uuid, messages, prompt):
# I don't know of another way to lookup uuid other than
# by the button value
# Save current state
if messages:
tabs[uuid] = {
"graph": gradio_graph,
"messages": messages,
"prompt": prompt
}
if selected_uuid not in tabs:
logger.error(f"Could not find the selected tab in offloaded_tabs_data_storage {selected_uuid}")
return gr.skip(), gr.skip(), gr.skip(), gr.skip()
selected_tab_state = tabs[selected_uuid]
selected_graph = selected_tab_state["graph"]
selected_messages = selected_tab_state["messages"]
selected_prompt = selected_tab_state.get("prompt", "")
suggestion_buttons = []
for _ in range(FOLLOWUP_QUESTION_NUMBER):
suggestion_buttons.append(gr.Button(visible=False))
return selected_graph, selected_uuid, selected_messages, tabs, selected_prompt, *suggestion_buttons
def delete_tab(current_chat_uuid, selected_uuid, sidebar_summaries, tabs):
output_messages = gr.skip()
if current_chat_uuid == selected_uuid:
output_messages = dict()
if selected_uuid in tabs:
del tabs[selected_uuid]
if selected_uuid in sidebar_summaries:
del sidebar_summaries[selected_uuid]
return sidebar_summaries, tabs, output_messages
def submit_edit_tab(selected_uuid, sidebar_summaries, text):
sidebar_summaries[selected_uuid] = text
return sidebar_summaries, ""
def load_mesh(mesh_file_name):
return mesh_file_name
def display_initial_greeting(is_new_user_state_value: bool):
"""
Determines if a greeting should be displayed and returns the UI updates.
It also returns the new state for 'is_new_user_for_greeting'.
"""
if is_new_user_state_value:
greeting_message_text = load_initial_greeting()
# For a chatbot, the history is a list of tuples: [(user_msg, bot_msg)]
# For an initial message from the bot, user_msg is None.
initial_chat_history = [(None, greeting_message_text)]
updated_is_new_user_flag = False # Greeting shown, so set to False
return initial_chat_history, updated_is_new_user_flag
else:
# Not a new user (or already greeted), so no initial message in chat history
# and the flag remains False.
return [], False
def get_sorted_3d_model_examples():
examples_dir = Path("./generated_3d_models")
if not examples_dir.exists():
return []
# Get all 3D model files with desired extensions
model_files = [
file for file in examples_dir.glob("*")
if file.suffix.lower() in {".obj", ".glb", ".gltf"}
]
# Sort files by creation time (latest first)
sorted_files = sorted(
model_files,
key=lambda x: x.stat().st_ctime,
reverse=True
)
# Convert to format [[path1], [path2], ...]
return [[str(file)] for file in sorted_files]
CSS = """
footer {visibility: hidden}
.followup-question-button {font-size: 12px }
.chat-tab {
font-size: 12px;
padding-inline: 0;
}
.chat-tab.active {
background-color: #654343;
}
#new-chat-button { background-color: #0f0f11; color: white; }
.tab-button-control {
min-width: 0;
padding-left: 0;
padding-right: 0;
}
.sidebar-collapsed {
display: none !important;
}
.wrap.sidebar-parent {
min-height: 2400px !important;
height: 2400px !important;
}
#main-app {
height: 4600px; /* or 800px, or 100% */
overflow-y: auto; /* optional if you want it scrollable */\
padding-top:2000px;
}
"""
# We set the ChatInterface textbox id to chat-textbox for this to work
TRIGGER_CHATINTERFACE_BUTTON = """
function triggerChatButtonClick() {
// Find the div with id "chat-textbox"
const chatTextbox = document.getElementById("chat-textbox");
if (!chatTextbox) {
console.error("Error: Could not find element with id 'chat-textbox'");
return;
}
// Find the button that is a descendant of the div
const button = chatTextbox.querySelector("button");
if (!button) {
console.error("Error: No button found inside the chat-textbox element");
return;
}
// Trigger the click event
button.click();
}"""
TOGGLE_SIDEBAR_JS = """
function toggleSidebarVisibility() {
console.log("Called the side bar funnction");
const sidebar = document.querySelector(".sidebar svelte-7y53u7 open");
if (!sidebar) {
console.error("Error: Could not find the sidebar element");
return;
}
sidebar.classList.toggle("sidebar-collapsed");
}
"""
if __name__ == "__main__":
logger.info("Starting the interface")
with gr.Blocks(title="DIYO is here", fill_height=True, css=CSS, elem_id="main-app") as demo:
is_new_user_for_greeting = gr.State(True)
chatbot_message_storage = gr.State([])
current_prompt_state = gr.BrowserState(
storage_key="current_prompt_state",
secret=BROWSER_STORAGE_SECRET,
)
current_uuid_state = gr.BrowserState(
uuid4,
storage_key="current_uuid_state",
secret=BROWSER_STORAGE_SECRET,
)
current_langgraph_state = gr.BrowserState(
dict(),
storage_key="current_langgraph_state",
secret=BROWSER_STORAGE_SECRET,
)
end_of_assistant_response_state = gr.State(
bool(),
)
# [uuid] -> summary of chat
sidebar_names_state = gr.BrowserState(
dict(),
storage_key="sidebar_names_state",
secret=BROWSER_STORAGE_SECRET,
)
# [uuid] -> {"graph": gradio_graph, "messages": messages}
offloaded_tabs_data_storage = gr.BrowserState(
dict(),
storage_key="offloaded_tabs_data_storage",
secret=BROWSER_STORAGE_SECRET,
)
chatbot_message_storage = gr.BrowserState(
[],
storage_key="chatbot_message_storage",
secret=BROWSER_STORAGE_SECRET,
)
with gr.Row(elem_classes="header-margin"):
# Add the decorated header with ASCII art
gr.Markdown("""
<div style="display: flex; align-items: center; justify-content: center; text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 15px; margin-bottom: 20px; color: white; box-shadow: 0 4px 15px rgba(0,0,0,0.2);">
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β β
β ββββββ βββββββ ββββββββββββ ββββββββββββ βββββββ ββββββ βββ βββββββ β
β ββββββββββββββββ βββββββββββββ ββββββββββββ βββββββββββββββ βββββββββββββ β
β βββββββββββ ββββββββββ ββββββ βββ βββ βββ ββββββ βββββββ βββ βββ β
β βββββββββββ βββββββββ ββββββββββ βββ βββ ββββββ βββββ βββ βββ β
β βββ βββββββββββββββββββββββ ββββββ βββ βββββββββββ βββ βββββββββ β
β βββ βββ βββββββ βββββββββββ βββββ βββ βββββββ βββ βββ βββββββ β
β β
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Let's build things, break boundaries with the help of AI!
</div>
""")
with gr.Row():
prompt_textbox = gr.Textbox(show_label=False, interactive=True)
with gr.Row():
checkbox_search_enabled = gr.Checkbox(
value=True,
label="Enable search",
show_label=True,
visible=search_enabled,
scale=1,
)
checkbox_download_website_text = gr.Checkbox(
value=True,
show_label=True,
label="Enable downloading text from urls",
scale=1,
)
with gr.Row():
with gr.Column(scale=2):
model_3d_output = gr.Model3D(
clear_color=[0.0, 0.0, 0.0, 0.0],
label="3D Model",
height=400 # Adjust height to align better with chatbot
)
with gr.Column(scale=1):
# Input for the 3D model
# Using UploadButton is often clearer for users than a clickable Model3D input
model_3d_upload_button = gr.UploadButton(
"Upload 3D Model (.obj, .glb, .gltf)",
file_types=[".obj", ".glb", ".gltf"],
# scale=0 # make it take less space if needed
)
model_3d_upload_button.upload(
fn=load_mesh,
inputs=model_3d_upload_button,
outputs=model_3d_output
)
gr.Examples(
label="Example 3D Models",
examples=get_sorted_3d_model_examples(),
inputs=model_3d_upload_button, # Dummy input for examples to load into Model3D
outputs=model_3d_output,
fn=load_mesh,
cache_examples=True # Caching might be useful
)
with gr.Row():
multimodal = False
textbox_component = (
gr.MultimodalTextbox if multimodal else gr.Textbox
)
textbox = textbox_component(
show_label=False,
label="Message",
placeholder="Type a message...",
scale=1,
autofocus=True,
submit_btn=True,
stop_btn=True,
elem_id="chat-textbox",
lines=1,
)
chatbot = gr.Chatbot(
type="messages",
scale=0,
show_copy_button=True,
height=400,
editable="all",
elem_classes="main-chatbox"
)
with gr.Row():
followup_question_buttons = []
for i in range(FOLLOWUP_QUESTION_NUMBER):
btn = gr.Button(f"Button {i+1}", visible=False)
followup_question_buttons.append(btn)
tab_edit_uuid_state = gr.State(
str()
)
prompt_textbox.change(lambda prompt: prompt, inputs=[prompt_textbox], outputs=[current_prompt_state])
with gr.Sidebar() as sidebar:
@gr.render(inputs=[tab_edit_uuid_state, end_of_assistant_response_state, sidebar_names_state, current_uuid_state, chatbot, offloaded_tabs_data_storage])
def render_chats(tab_uuid_edit, end_of_chat_response, sidebar_summaries, active_uuid, messages, tabs):
current_tab_button_text = ""
if active_uuid not in sidebar_summaries:
current_tab_button_text = "Current Chat"
elif active_uuid not in tabs:
current_tab_button_text = sidebar_summaries[active_uuid]
if current_tab_button_text:
unique_id = f"current-tab-{active_uuid}-{uuid4()}"
gr.Button(
current_tab_button_text,
elem_classes=["chat-tab", "active"],
elem_id=unique_id # Add unique elem_id
)
for chat_uuid, tab in reversed(tabs.items()):
elem_classes = ["chat-tab"]
if chat_uuid == active_uuid:
elem_classes.append("active")
button_uuid_state = gr.State(chat_uuid)
with gr.Row():
clear_tab_button = gr.Button(
"π",
scale=0,
elem_classes=["tab-button-control"],
elem_id=f"delete-btn-{chat_uuid}-{uuid4()}" # Add unique ID
)
clear_tab_button.click(
fn=delete_tab,
inputs=[
current_uuid_state,
button_uuid_state,
sidebar_names_state,
offloaded_tabs_data_storage
],
outputs=[
sidebar_names_state,
offloaded_tabs_data_storage,
chat_interface.chatbot_value
]
)
chat_button_text = sidebar_summaries.get(chat_uuid)
if not chat_button_text:
chat_button_text = str(chat_uuid)
if chat_uuid != tab_uuid_edit:
set_edit_tab_button = gr.Button(
"β",
scale=0,
elem_classes=["tab-button-control"],
elem_id=f"edit-btn-{chat_uuid}-{uuid4()}" # Add unique ID
)
set_edit_tab_button.click(
fn=lambda x: x,
inputs=[button_uuid_state],
outputs=[tab_edit_uuid_state]
)
chat_tab_button = gr.Button(
chat_button_text,
elem_id=f"chat-{chat_uuid}-{uuid4()}", # Add truly unique ID
elem_classes=elem_classes,
scale=2
)
chat_tab_button.click(
fn=switch_tab,
inputs=[
button_uuid_state,
offloaded_tabs_data_storage,
current_langgraph_state,
current_uuid_state,
chatbot,
prompt_textbox
],
outputs=[
current_langgraph_state,
current_uuid_state,
chat_interface.chatbot_value,
offloaded_tabs_data_storage,
prompt_textbox,
*followup_question_buttons
]
)
else:
chat_tab_text = gr.Textbox(
chat_button_text,
scale=2,
interactive=True,
show_label=False,
elem_id=f"edit-text-{chat_uuid}-{uuid4()}" # Add unique ID
)
chat_tab_text.submit(
fn=submit_edit_tab,
inputs=[
button_uuid_state,
sidebar_names_state,
chat_tab_text
],
outputs=[
sidebar_names_state,
tab_edit_uuid_state
]
)
# )
# return chat_tabs, sidebar_summaries
new_chat_button = gr.Button("New Chat", elem_id="new-chat-button")
chatbot.clear(fn=clear, outputs=[current_langgraph_state, current_uuid_state])
chat_interface = gr.ChatInterface(
chatbot=chatbot,
fn=chat_fn,
additional_inputs=[
current_langgraph_state,
current_uuid_state,
prompt_textbox,
checkbox_search_enabled,
checkbox_download_website_text,
],
additional_outputs=[
current_langgraph_state,
end_of_assistant_response_state
],
type="messages",
multimodal=multimodal,
textbox=textbox,
)
new_chat_button.click(
new_tab,
inputs=[
current_uuid_state,
current_langgraph_state,
chatbot,
offloaded_tabs_data_storage,
prompt_textbox,
sidebar_names_state,
],
outputs=[
current_uuid_state,
current_langgraph_state,
chat_interface.chatbot_value,
offloaded_tabs_data_storage,
prompt_textbox,
sidebar_names_state,
*followup_question_buttons,
]
)
def click_followup_button(btn):
buttons = [gr.Button(visible=False) for _ in range(len(followup_question_buttons))]
return btn, *buttons
for btn in followup_question_buttons:
btn.click(
fn=click_followup_button,
inputs=[btn],
outputs=[
chat_interface.textbox,
*followup_question_buttons
]
).success(lambda: None, js=TRIGGER_CHATINTERFACE_BUTTON)
chatbot.change(
fn=populate_followup_questions,
inputs=[
end_of_assistant_response_state,
chatbot,
current_uuid_state
],
outputs=[
*followup_question_buttons,
end_of_assistant_response_state
],
trigger_mode="multiple"
)
chatbot.change(
fn=summarize_chat,
inputs=[
end_of_assistant_response_state,
chatbot,
sidebar_names_state,
current_uuid_state
],
outputs=[
sidebar_names_state,
end_of_assistant_response_state
],
trigger_mode="multiple"
)
chatbot.change(
fn=lambda x: x,
inputs=[chatbot],
outputs=[chatbot_message_storage],
trigger_mode="always_last"
)
@demo.load( # Or demo.load
inputs=[
is_new_user_for_greeting,
chatbot_message_storage # Pass the current stored messages
],
outputs=[
chatbot_message_storage, # Update the stored messages with the greeting
is_new_user_for_greeting # Update the flag
]
)
def handle_initial_greeting_load(current_is_new_user_flag: bool, existing_chat_history: list):
"""
This function is called by the @app.load decorator above.
It decides whether to add a greeting to the chat history.
"""
# You can either put the logic directly here, or call the globally defined one.
# Option 1: Call the globally defined function (cleaner if it's complex)
# Make sure 'display_initial_greeting_on_load' is defined globally in your app.py
# For this example, I'm assuming 'display_initial_greeting_on_load' is the one we defined earlier:
# def display_initial_greeting_on_load(current_is_new_user_flag: bool, existing_chat_history: list):
# if current_is_new_user_flag:
# greeting_message_text = load_initial_greeting() # from graph.py
# greeting_entry = (None, greeting_message_text)
# if not isinstance(existing_chat_history, list): existing_chat_history = []
# updated_chat_history = [greeting_entry] + existing_chat_history
# updated_is_new_user_flag = False
# logger.info("Greeting added for new user.")
# return updated_chat_history, updated_is_new_user_flag
# else:
# logger.info("Not a new user or already greeted, no greeting added.")
# return existing_chat_history, False
#
# return display_initial_greeting_on_load(current_is_new_user_flag, existing_chat_history)
# Option 2: Put logic directly here (if simple enough)
if current_is_new_user_flag:
greeting_message_text = load_initial_greeting() # Make sure load_initial_greeting is imported
greeting_entry = {"role": "assistant", "content": greeting_message_text}
# Ensure existing_chat_history is a list before concatenation
if not isinstance(existing_chat_history, list):
existing_chat_history = []
updated_chat_history = [greeting_entry] + existing_chat_history
updated_is_new_user_flag = False
logger.info("Greeting added for new user via handle_initial_greeting_load.")
return updated_chat_history, updated_is_new_user_flag
else:
logger.info("Not a new user or already greeted (handle_initial_greeting_load path).")
return existing_chat_history, False
@demo.load(inputs=[chatbot_message_storage], outputs=[chat_interface.chatbot_value])
def load_messages(messages):
return messages
@demo.load(inputs=[current_prompt_state], outputs=[prompt_textbox])
def load_prompt(current_prompt):
return current_prompt
# demo.launch(server_name="127.0.0.1", server_port=8080, share=True)
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|