Spaces:
Sleeping
Sleeping
File size: 19,054 Bytes
a23082c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import os
import certifi
import logging
import subprocess # For calling ffmpeg if needed
from typing import List, Dict, Optional
from dotenv import load_dotenv
from llama_index.core.agent.workflow import ReActAgent
from llama_index.core.tools import FunctionTool
from llama_index.llms.google_genai import GoogleGenAI
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core import Document
# Attempt to import Whisper
try:
import whisper
WHISPER_AVAILABLE = True
except ImportError:
logging.warning("openai-whisper not installed. Audio transcription tool will be unavailable.")
WHISPER_AVAILABLE = False
# Load environment variables
load_dotenv()
# Setup logging
logger = logging.getLogger(__name__)
# Global Whisper model instance (lazy loaded)
_whisper_model = None
os.environ["SSL_CERT_FILE"] = certifi.where()
# Helper function to load prompt from file
def load_prompt_from_file(filename: str, default_prompt: str) -> str:
"""Loads a prompt from a text file."""
try:
script_dir = os.path.dirname(__file__)
prompt_path = os.path.join(script_dir, filename)
with open(prompt_path, "r") as f:
prompt = f.read()
logger.info(f"Successfully loaded prompt from {prompt_path}")
return prompt
except FileNotFoundError:
logger.warning(f"Prompt file {filename} not found at {prompt_path}. Using default.")
return default_prompt
except Exception as e:
logger.error(f"Error loading prompt file {filename}: {e}", exc_info=True)
return default_prompt
# --- Helper function to load Whisper model ---
def _load_whisper_model(model_size: str = "small") -> Optional[object]:
"""Loads the Whisper model instance, lazy loading."""
global _whisper_model
if not WHISPER_AVAILABLE:
logger.error("Whisper library not available, cannot load model.")
return None
if _whisper_model is None:
try:
logger.info(f"Loading Whisper model: {model_size}...")
# Allow model size selection via env var, default to "base"
selected_model_size = os.getenv("WHISPER_MODEL_SIZE", model_size)
print(f"Available Whisper models: {whisper.available_models()}")
_whisper_model = whisper.load_model(selected_model_size)
logger.info(f"Whisper model {selected_model_size} loaded successfully.")
except Exception as e:
logger.error(f"Failed to load Whisper model {selected_model_size}: {e}", exc_info=True)
_whisper_model = None # Ensure it remains None on failure
return _whisper_model
# --- Tool Functions ---
def summarize_text(text: str, max_length: int = 150, min_length: int = 30) -> str:
"""Summarize the provided text using an LLM."""
logger.info(f"Summarizing text (length: {len(text)} chars). Max/Min length: {max_length}/{min_length}")
# Configuration for summarization LLM
summarizer_llm_model = os.getenv("SUMMARIZER_LLM_MODEL", "models/gemini-1.5-flash") # Use flash for speed
gemini_api_key = os.getenv("GEMINI_API_KEY")
if not gemini_api_key:
logger.error("GEMINI_API_KEY not found for summarization tool LLM.")
return "Error: GEMINI_API_KEY not set for summarization."
# Truncate input text if excessively long to avoid API limits/costs
max_input_chars = 30000 # Example limit, adjust as needed
if len(text) > max_input_chars:
logger.warning(f"Input text truncated to {max_input_chars} chars for summarization.")
text = text[:max_input_chars]
prompt = (
f"Summarize the following text concisely. Aim for a length between {min_length} and {max_length} words. "
f"Focus on the main points and key information.\n\n"
f"TEXT:\n{text}\n\nSUMMARY:"
)
try:
llm = GoogleGenAI(api_key=gemini_api_key, model=summarizer_llm_model)
logger.info(f"Using summarization LLM: {summarizer_llm_model}")
response = llm.complete(prompt)
summary = response.text.strip()
logger.info(f"Summarization successful (output length: {len(summary.split())} words).")
return summary
except Exception as e:
logger.error(f"LLM call failed during summarization: {e}", exc_info=True)
return f"Error during summarization: {e}"
def extract_entities(text: str, entity_types: List[str] = ["PERSON", "ORG", "GPE", "DATE", "EVENT"]) -> Dict[str, List[str]]:
"""Extract named entities (like people, organizations, locations, dates) from the text using an LLM."""
logger.info(f"Extracting entities (types: {entity_types}) from text (length: {len(text)} chars).")
# Configuration for entity extraction LLM
entity_llm_model = os.getenv("ENTITY_LLM_MODEL", "models/gemini-1.5-flash") # Use flash for speed
gemini_api_key = os.getenv("GEMINI_API_KEY")
if not gemini_api_key:
logger.error("GEMINI_API_KEY not found for entity extraction tool LLM.")
return {"error": "GEMINI_API_KEY not set for entity extraction."}
# Truncate input text if excessively long
max_input_chars = 30000 # Example limit
if len(text) > max_input_chars:
logger.warning(f"Input text truncated to {max_input_chars} chars for entity extraction.")
text = text[:max_input_chars]
# Define the desired output format clearly in the prompt
prompt = (
f"Extract named entities from the following text. Identify entities of these types: {', '.join(entity_types)}. "
f"Format the output as a JSON object where keys are the entity types (uppercase) and values are lists of unique strings found for that type. "
f"If no entities of a type are found, include the key with an empty list.\n\n"
f"TEXT:\n{text}\n\nJSON_OUTPUT:"
)
try:
llm = GoogleGenAI(api_key=gemini_api_key, model=entity_llm_model, response_mime_type="application/json") # Request JSON output
logger.info(f"Using entity extraction LLM: {entity_llm_model}")
response = llm.complete(prompt)
# Attempt to parse the JSON response
import json
try:
# The response might be wrapped in ```json ... ```, try to extract it
json_str = response.text.strip()
if json_str.startswith("```json"):
json_str = json_str[7:]
if json_str.endswith("```"):
json_str = json_str[:-3]
entities = json.loads(json_str.strip())
# Validate structure (optional but good practice)
if not isinstance(entities, dict):
raise ValueError("LLM response is not a JSON object.")
# Ensure all requested types are present, even if empty
for entity_type in entity_types:
if entity_type not in entities:
entities[entity_type] = []
elif not isinstance(entities[entity_type], list):
logger.warning(f"Entity type {entity_type} value is not a list, converting.")
entities[entity_type] = [str(entities[entity_type])] # Attempt conversion
logger.info(f"Entity extraction successful. Found entities: { {k: len(v) for k, v in entities.items()} }")
return entities
except json.JSONDecodeError as json_err:
logger.error(f"Failed to parse JSON response from LLM: {json_err}. Response text: {response.text}")
return {"error": f"Failed to parse LLM JSON response: {json_err}"}
except ValueError as val_err:
logger.error(f"Invalid JSON structure from LLM: {val_err}. Response text: {response.text}")
return {"error": f"Invalid JSON structure from LLM: {val_err}"}
except Exception as e:
logger.error(f"LLM call failed during entity extraction: {e}", exc_info=True)
return {"error": f"Error during entity extraction: {e}"}
def split_text_into_chunks(text: str, chunk_size: int = 1000, chunk_overlap: int = 200) -> List[str]:
"""Split a long text into smaller chunks suitable for processing."""
logger.info(f"Splitting text (length: {len(text)} chars) into chunks (size: {chunk_size}, overlap: {chunk_overlap}).")
if not text:
return []
try:
splitter = SentenceSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
document = Document(text=text)
nodes = splitter.get_nodes_from_documents([document])
chunks = [node.get_content() for node in nodes]
logger.info(f"Text split into {len(chunks)} chunks.")
return chunks
except Exception as e:
logger.error(f"Error splitting text: {e}", exc_info=True)
# Fallback to simple splitting if SentenceSplitter fails
logger.warning("Falling back to simple text splitting.")
return [text[i:i + chunk_size] for i in range(0, len(text), chunk_size - chunk_overlap)]
def transcribe_audio(audio_file_path: str, language: Optional[str] = None) -> str:
"""Transcribes an audio file using the OpenAI Whisper model.
Args:
audio_file_path (str): The path to the audio file (e.g., mp3, wav, m4a).
language (Optional[str]): The language code (e.g., "en", "es") or full name ("English", "Spanish").
If None, Whisper will detect the language.
Returns:
str: The transcribed text or an error message.
"""
logger.info(f"Attempting to transcribe audio file: {audio_file_path}, Language: {language}")
# Check if Whisper is available
if not WHISPER_AVAILABLE:
return "Error: openai-whisper library is required but not installed."
# Check if file exists
if not os.path.exists(audio_file_path):
logger.error(f"Audio file not found: {audio_file_path}")
return f"Error: Audio file not found at {audio_file_path}"
# Load the Whisper model (lazy loading)
model = _load_whisper_model() # Uses default size "base" or WHISPER_MODEL_SIZE env var
if model is None:
return "Error: Failed to load Whisper model."
try:
# Perform transcription
# The transcribe function handles various audio formats via ffmpeg
result = model.transcribe(audio_file_path, language=language)
transcribed_text = result["text"]
detected_language = result.get("language", "unknown") # Get detected language if available
logger.info(f"Audio transcription successful. Detected language: {detected_language}. Text length: {len(transcribed_text)}")
return transcribed_text
except Exception as e:
# Check if it might be an ffmpeg issue
if "ffmpeg" in str(e).lower():
logger.error(f"Error during transcription, possibly ffmpeg issue: {e}", exc_info=True)
# Check if ffmpeg is installed using shell command
try:
subprocess.run(["ffmpeg", "-version"], check=True, capture_output=True)
# If ffmpeg is installed, the error is likely something else
return f"Error during transcription (ffmpeg seems installed): {e}"
except (FileNotFoundError, subprocess.CalledProcessError):
logger.error("ffmpeg command not found or failed. Please ensure ffmpeg is installed and in PATH.")
return "Error: ffmpeg not found or not working. Please install ffmpeg."
else:
logger.error(f"Unexpected error during transcription: {e}", exc_info=True)
return f"Error during transcription: {e}"
# --- Tool Definitions ---
summarize_tool = FunctionTool.from_defaults(
fn=summarize_text,
name="summarize_text",
description=(
"Summarizes a given block of text. Useful for condensing long documents or articles. "
"Input: text (str), Optional: max_length (int), min_length (int). Output: summary (str) or error."
),
)
extract_entities_tool = FunctionTool.from_defaults(
fn=extract_entities,
name="extract_entities",
description=(
"Extracts named entities (people, organizations, locations, dates, events) from text. "
"Input: text (str), Optional: entity_types (List[str]). Output: Dict[str, List[str]] or error dict."
),
)
split_text_tool = FunctionTool.from_defaults(
fn=split_text_into_chunks,
name="split_text_into_chunks",
description=(
"Splits a long text document into smaller, overlapping chunks. "
"Input: text (str), Optional: chunk_size (int), chunk_overlap (int). Output: List[str] of chunks."
),
)
# Conditionally create transcribe_audio_tool
transcribe_audio_tool = None
if WHISPER_AVAILABLE:
transcribe_audio_tool = FunctionTool.from_defaults(
fn=transcribe_audio,
name="transcribe_audio_file",
description=(
"Transcribes speech from an audio file (e.g., mp3, wav, m4a) into text using Whisper. "
"Input: audio_file_path (str), Optional: language (str - e.g., \"en\", \"Spanish\"). "
"Output: transcribed text (str) or error message."
),
)
logger.info("Audio transcription tool created.")
else:
logger.warning("Audio transcription tool disabled because openai-whisper is not installed.")
# --- Agent Initialization ---
def initialize_text_analyzer_agent() -> ReActAgent:
"""Initializes the Text Analyzer Agent."""
logger.info("Initializing TextAnalyzerAgent...")
# Configuration for the agent's main LLM
agent_llm_model = os.getenv("TEXT_ANALYZER_AGENT_LLM_MODEL", "models/gemini-1.5-pro")
gemini_api_key = os.getenv("GEMINI_API_KEY")
if not gemini_api_key:
logger.error("GEMINI_API_KEY not found for TextAnalyzerAgent.")
raise ValueError("GEMINI_API_KEY must be set for TextAnalyzerAgent")
try:
llm = GoogleGenAI(api_key=gemini_api_key, model=agent_llm_model)
logger.info(f"Using agent LLM: {agent_llm_model}")
# Load system prompt
default_system_prompt = ("You are TextAnalyzerAgent... [Default prompt content - replace with actual]" # Placeholder
)
system_prompt = load_prompt_from_file("../prompts/text_analyzer_prompt.txt", default_system_prompt)
if system_prompt == default_system_prompt:
logger.warning("Using default/fallback system prompt for TextAnalyzerAgent.")
# Define available tools, including the audio tool if available
tools = [summarize_tool, extract_entities_tool, split_text_tool]
if transcribe_audio_tool:
tools.append(transcribe_audio_tool)
# Update agent description based on available tools
agent_description = (
"Analyzes text content. Can summarize text (`summarize_text`), extract named entities (`extract_entities`), "
"and split long texts (`split_text_into_chunks`)."
)
if transcribe_audio_tool:
agent_description += " Can also transcribe audio files to text (`transcribe_audio_file`)."
agent = ReActAgent(
name="text_analyzer_agent",
description=agent_description,
tools=tools,
llm=llm,
system_prompt=system_prompt,
can_handoff_to=["planner_agent", "research_agent", "reasoning_agent"], # Example handoffs
)
logger.info("TextAnalyzerAgent initialized successfully.")
return agent
except Exception as e:
logger.error(f"Error during TextAnalyzerAgent initialization: {e}", exc_info=True)
raise
# Example usage (for testing if run directly)
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger.info("Running text_analyzer_agent.py directly for testing...")
# Check required keys
required_keys = ["GEMINI_API_KEY"]
missing_keys = [key for key in required_keys if not os.getenv(key)]
if missing_keys:
print(f"Error: Required environment variable(s) not set: {', '.join(missing_keys)}. Cannot run test.")
else:
try:
# Test summarization
print("\nTesting summarization...")
long_text = """The Industrial Revolution, now also known as the First Industrial Revolution, was a period of global transition of the human economy towards more efficient and stable manufacturing processes that succeeded the Agricultural Revolution, starting from Great Britain, continental Europe and the United States, that occurred during the period from around 1760 to about 1820–1840. This transition included going from hand production methods to machines; new chemical manufacturing and iron production processes; the increasing use of water power and steam power; the development of machine tools; and the rise of the mechanized factory system. The Revolution also saw an unprecedented rise in the rate of population growth."""
summary = summarize_text(long_text, max_length=50)
print(f"Summary:\n{summary}")
# Test entity extraction
print("\nTesting entity extraction...")
entities = extract_entities(long_text, entity_types=["EVENT", "GPE", "DATE"])
print(f"Extracted Entities:\n{entities}")
# Test text splitting
print("\nTesting text splitting...")
chunks = split_text_into_chunks(long_text * 3, chunk_size=150, chunk_overlap=30) # Make text longer
print(f"Split into {len(chunks)} chunks. First chunk:\n{chunks[0]}")
# Test audio transcription (if available)
if WHISPER_AVAILABLE:
print("\nTesting audio transcription...")
# Create a dummy audio file for testing (requires ffmpeg)
dummy_file = "dummy_audio.mp3"
try:
# Generate a 1-second silent MP3 using ffmpeg
subprocess.run(["ffmpeg", "-f", "lavfi", "-i", "anullsrc=r=44100:cl=mono", "-t", "1", "-q:a", "9", "-y", dummy_file], check=True, capture_output=True)
print(f"Created dummy audio file: {dummy_file}")
transcript = transcribe_audio(dummy_file)
print(f"Transcription Result: '{transcript}' (Expected: empty or silence markers)")
os.remove(dummy_file) # Clean up dummy file
except Exception as ffmpeg_err:
print(f"Could not create/test dummy audio file (ffmpeg required): {ffmpeg_err}")
else:
print("\nSkipping audio transcription test as openai-whisper is not available.")
# Initialize the agent (optional)
# test_agent = initialize_text_analyzer_agent()
# print("\nText Analyzer Agent initialized successfully for testing.")
except Exception as e:
print(f"Error during testing: {e}")
|