# app.py import gradio as gr import torch import torch.nn.functional as F # Needed for beam search log_softmax import pytorch_lightning as pl # Needed for LightningModule and loading import os import json import logging from tokenizers import Tokenizer from huggingface_hub import hf_hub_download import gc # For garbage collection on potential OOM import math # Potentially needed by imported classes # --- Configuration --- # Ensure these match the files uploaded to your Hugging Face Hub repository MODEL_REPO_ID = ( "AdrianM0/smiles-to-iupac-translator" # <-- Make sure this is your repo ID ) CHECKPOINT_FILENAME = "last.ckpt" # Or "best_model.ckpt" or whatever you uploaded SMILES_TOKENIZER_FILENAME = "smiles_bytelevel_bpe_tokenizer_scaled.json" IUPAC_TOKENIZER_FILENAME = "iupac_unigram_tokenizer_scaled.json" CONFIG_FILENAME = ( "config.json" # Assumes you saved hparams to config.json during/after training ) # --- End Configuration --- # --- Logging --- logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" ) # --- Load Helper Code (Only Model Definition and Mask Function Needed) --- try: # We need the LightningModule definition and the mask function # Ensure enhanced_trainer.py is present in the root of your HF Repo from enhanced_trainer import SmilesIupacLitModule, generate_square_subsequent_mask logging.info("Successfully imported from enhanced_trainer.py.") # REMOVED: Redundant import from test_ckpt as functions are defined below # from test_ckpt import beam_search_decode, translate except ImportError as e: logging.error( f"Failed to import helper code from enhanced_trainer.py: {e}. " f"Make sure enhanced_trainer.py is in the root of the Hugging Face repo '{MODEL_REPO_ID}'." ) # Raise error visible in Gradio UI and logs raise gr.Error( f"Initialization Error: Could not load necessary Python modules (enhanced_trainer.py). Check Space logs. Error: {e}" ) except Exception as e: logging.error( f"An unexpected error occurred during helper code import: {e}", exc_info=True ) raise gr.Error( f"Initialization Error: An unexpected error occurred loading helper modules. Check Space logs. Error: {e}" ) # --- Global Variables (Load Model Once) --- model: pl.LightningModule | None = None smiles_tokenizer: Tokenizer | None = None iupac_tokenizer: Tokenizer | None = None device: torch.device | None = None config: dict | None = None # --- Beam Search Decoding Logic (Locally defined) --- def beam_search_decode( model: pl.LightningModule, src: torch.Tensor, src_padding_mask: torch.Tensor, max_len: int, sos_idx: int, eos_idx: int, pad_idx: int, device: torch.device, beam_width: int = 5, n_best: int = 5, length_penalty: float = 0.6, ) -> list[torch.Tensor]: """ Performs beam search decoding using the LightningModule's model. (Ensures this code is self-contained within app.py or correctly imported) """ model.eval() # Ensure model is in evaluation mode transformer_model = model.model # Access the underlying Seq2SeqTransformer n_best = min(n_best, beam_width) try: with torch.no_grad(): # --- Encode Source --- memory = transformer_model.encode( src, src_padding_mask ) # [1, src_len, emb_size] memory = memory.to(device) memory_key_padding_mask = src_padding_mask.to(memory.device) # [1, src_len] # --- Initialize Beams --- initial_beam_seq = torch.ones(1, 1, dtype=torch.long, device=device).fill_( sos_idx ) # [1, 1] initial_beam_score = torch.zeros(1, dtype=torch.float, device=device) # [1] active_beams = [(initial_beam_seq, initial_beam_score)] finished_beams = [] # --- Decoding Loop --- for step in range(max_len - 1): if not active_beams: break potential_next_beams = [] for current_seq, current_score in active_beams: # Check if the beam already ended if current_seq[0, -1].item() == eos_idx: # If already finished, add directly to finished beams and skip expansion finished_beams.append((current_seq, current_score)) continue # Prepare inputs for the decoder tgt_input = current_seq # [1, current_len] tgt_seq_len = tgt_input.shape[1] tgt_mask = generate_square_subsequent_mask(tgt_seq_len, device).to( device ) # [curr_len, curr_len] # No padding in target during generation yet tgt_padding_mask = torch.zeros( tgt_input.shape, dtype=torch.bool, device=device ) # [1, curr_len] # Decode one step decoder_output = transformer_model.decode( tgt=tgt_input, memory=memory, tgt_mask=tgt_mask, tgt_padding_mask=tgt_padding_mask, memory_key_padding_mask=memory_key_padding_mask, ) # [1, curr_len, emb_size] # Get logits for the *next* token prediction next_token_logits = transformer_model.generator( decoder_output[ :, -1, : ] # Use output corresponding to the last input token ) # [1, tgt_vocab_size] # Calculate log probabilities and add current beam score log_probs = F.log_softmax( next_token_logits, dim=-1 ) # [1, tgt_vocab_size] combined_scores = ( log_probs + current_score ) # Add score of the current path # Find top k candidates for the *next* step topk_log_probs, topk_indices = torch.topk( combined_scores, beam_width, dim=-1 ) # [1, beam_width], [1, beam_width] # Expand potential beams for i in range(beam_width): next_token_id = topk_indices[0, i].item() # Score is the cumulative log probability of the new sequence next_score = topk_log_probs[0, i].reshape( 1 ) # Keep as tensor [1] next_token_tensor = torch.tensor( [[next_token_id]], dtype=torch.long, device=device ) # [1, 1] new_seq = torch.cat( [current_seq, next_token_tensor], dim=1 ) # [1, current_len + 1] potential_next_beams.append((new_seq, next_score)) # --- Prune Beams --- # Sort all potential next beams by score potential_next_beams.sort(key=lambda x: x[1].item(), reverse=True) # Select the top `beam_width` beams for the next iteration active_beams = [] temp_finished_beams = [] # Collect beams finished in *this* step for seq, score in potential_next_beams: if ( len(active_beams) >= beam_width and len(temp_finished_beams) >= beam_width ): break # Optimization: Stop if we have enough active and finished candidates is_finished = seq[0, -1].item() == eos_idx if is_finished: # Add to temporary finished list for this step if len(temp_finished_beams) < beam_width: temp_finished_beams.append((seq, score)) elif len(active_beams) < beam_width: # Add to active beams for next step active_beams.append((seq, score)) # Add the newly finished beams to the main finished list finished_beams.extend(temp_finished_beams) # Optional: Prune finished_beams if it grows too large (e.g., keep top 2*beam_width) finished_beams.sort(key=lambda x: x[1].item(), reverse=True) finished_beams = finished_beams[ : beam_width * 2 ] # Keep a reasonable number # --- Final Selection --- # Add any remaining active beams (which didn't finish) to the finished list finished_beams.extend(active_beams) # Apply length penalty and sort def get_score_with_penalty(beam_tuple): seq, score = beam_tuple seq_len = seq.shape[1] # Avoid division by zero or negative exponent issues if length_penalty <= 0.0 or seq_len <= 1: return score.item() else: # Length penalty calculation penalty = ( (5.0 + float(seq_len)) / 6.0 ) ** length_penalty # Common formula return score.item() / penalty # Alternative simpler penalty: # return score.item() / (float(seq_len) ** length_penalty) finished_beams.sort( key=get_score_with_penalty, reverse=True ) # Higher score is better # Return the top n_best sequences (excluding the initial SOS token) top_sequences = [ seq[:, 1:] for seq, score in finished_beams[:n_best] if seq.shape[1] > 1 # Ensure seq not just SOS ] # seq shape [1, len] -> [1, len-1] return top_sequences except RuntimeError as e: logging.error(f"Runtime error during beam search decode: {e}", exc_info=True) if "CUDA out of memory" in str(e) and device.type == "cuda": gc.collect() torch.cuda.empty_cache() return [] # Return empty list on error except Exception as e: logging.error(f"Unexpected error during beam search decode: {e}", exc_info=True) return [] # --- Translation Function (Locally defined) --- def translate( model: pl.LightningModule, src_sentence: str, smiles_tokenizer: Tokenizer, iupac_tokenizer: Tokenizer, device: torch.device, max_len: int, sos_idx: int, eos_idx: int, pad_idx: int, beam_width: int = 5, n_best: int = 5, length_penalty: float = 0.6, ) -> list[str]: """ Translates a single SMILES string using beam search. (Ensures this code is self-contained within app.py or correctly imported) """ model.eval() # Ensure model is in eval mode translations = [] n_best = min(n_best, beam_width) # Can't return more than beam width # --- Tokenize Source --- try: # Ensure tokenizer has truncation/padding configured if needed, or handle manually smiles_tokenizer.enable_truncation(max_length=max_len) src_encoded = smiles_tokenizer.encode(src_sentence) if not src_encoded or not src_encoded.ids: logging.warning(f"Encoding failed or empty for SMILES: {src_sentence}") return ["[Encoding Error]"] * n_best # Use the truncated IDs directly src_ids = src_encoded.ids # Note: max_len here applies to source *tokenizer*, generation length is separate except Exception as e: logging.error(f"Error tokenizing SMILES '{src_sentence}': {e}", exc_info=True) return ["[Encoding Error]"] * n_best # --- Prepare Input Tensor and Mask --- src = ( torch.tensor(src_ids, dtype=torch.long).unsqueeze(0).to(device) ) # [1, src_len] # Create padding mask (True where it's a pad token, should be all False here) src_padding_mask = (src == pad_idx).to(device) # [1, src_len] # --- Perform Beam Search Decoding --- # Calls the beam_search_decode function defined *above in this file* # Note: max_len for generation should come from config if it dictates output length generation_max_len = config.get( "max_len", 256 ) # Use config max_len for output limit tgt_tokens_list = beam_search_decode( model=model, src=src, src_padding_mask=src_padding_mask, max_len=generation_max_len, # Use generation limit sos_idx=sos_idx, eos_idx=eos_idx, pad_idx=pad_idx, device=device, beam_width=beam_width, n_best=n_best, length_penalty=length_penalty, ) # Returns list of tensors # --- Decode Generated Tokens --- if not tgt_tokens_list: logging.warning(f"Beam search returned empty list for SMILES: {src_sentence}") # Provide n_best error messages return ["[Decoding Error - Empty Output]"] * n_best for i, tgt_tokens_tensor in enumerate(tgt_tokens_list): if tgt_tokens_tensor is not None and tgt_tokens_tensor.numel() > 0: tgt_tokens = tgt_tokens_tensor.flatten().cpu().numpy().tolist() try: # Decode using the target tokenizer, skipping special tokens translation = iupac_tokenizer.decode( tgt_tokens, skip_special_tokens=True ) translations.append(translation) except Exception as e: logging.error( f"Error decoding target tokens {tgt_tokens} for beam {i}: {e}", exc_info=True, ) translations.append("[Decoding Error]") else: logging.warning( f"Beam {i} result was empty or None for SMILES: {src_sentence}" ) translations.append("[Decoding Error - Empty Tensor]") # Pad with error messages if fewer than n_best results were generated while len(translations) < n_best: translations.append("[Decoding Error - Fewer Results]") return translations # --- Model/Tokenizer Loading Function --- def load_model_and_tokenizers(): """Loads tokenizers, config, and model from Hugging Face Hub.""" global model, smiles_tokenizer, iupac_tokenizer, device, config if model is not None: # Already loaded logging.info("Model and tokenizers already loaded.") return logging.info(f"Starting model and tokenizer loading from {MODEL_REPO_ID}...") try: # Determine device - Use CPU for Gradio Spaces unless GPU is explicitly available and desired # For simplicity and broader compatibility on free tier Spaces, CPU is safer. if torch.cuda.is_available(): logging.warning( "CUDA is available, but forcing CPU for Gradio app simplicity. Modify if GPU is intended." ) device = torch.device("cpu") # Uncomment below and comment above line to try using GPU if available # device = torch.device("cuda") # logging.info("CUDA available, using GPU.") else: device = torch.device("cpu") logging.info("CUDA not available, using CPU.") # Download files from HF Hub logging.info("Downloading files from Hugging Face Hub...") try: # Use cache directory for Spaces persistence if possible cache_dir = os.environ.get( "GRADIO_CACHE", "./hf_cache" ) # Gradio sets cache dir os.makedirs(cache_dir, exist_ok=True) logging.info(f"Using cache directory: {cache_dir}") checkpoint_path = hf_hub_download( repo_id=MODEL_REPO_ID, filename=CHECKPOINT_FILENAME, cache_dir=cache_dir ) smiles_tokenizer_path = hf_hub_download( repo_id=MODEL_REPO_ID, filename=SMILES_TOKENIZER_FILENAME, cache_dir=cache_dir, ) iupac_tokenizer_path = hf_hub_download( repo_id=MODEL_REPO_ID, filename=IUPAC_TOKENIZER_FILENAME, cache_dir=cache_dir, ) config_path = hf_hub_download( repo_id=MODEL_REPO_ID, filename=CONFIG_FILENAME, cache_dir=cache_dir ) logging.info("Files downloaded successfully.") except Exception as e: logging.error( f"Failed to download files from {MODEL_REPO_ID}. Check filenames ({CHECKPOINT_FILENAME}, {SMILES_TOKENIZER_FILENAME}, etc.) and repo status. Error: {e}", exc_info=True, ) raise gr.Error( f"Download Error: Could not download required files from {MODEL_REPO_ID}. Check Space logs. Error: {e}" ) # Load config logging.info("Loading configuration...") try: with open(config_path, "r") as f: config = json.load(f) logging.info("Configuration loaded.") # --- Validate essential config keys --- # Use hparams logged during training if available, map them carefully # These keys are based on SmilesIupacLitModule and Seq2SeqTransformer init args # Mappings might be needed if keys in config.json differ from these exact names required_keys = [ # Need vocab sizes used during *training* for loading "actual_src_vocab_size", # Assuming this was saved in hparams "actual_tgt_vocab_size", # Assuming this was saved in hparams # Model architecture params "emb_size", "nhead", "ffn_hid_dim", "num_encoder_layers", "num_decoder_layers", "dropout", "max_len", # Needed for generation limit and tokenizer setting # Special token IDs needed for generation # Assuming standard names, adjust if your config uses different keys "pad_token_id", # Often 0 "bos_token_id", # Often 1 (used as SOS) "eos_token_id", # Often 2 ] # Remap keys if necessary (e.g., if config.json uses 'src_vocab_size' instead of 'actual_src_vocab_size') config_key_mapping = { "actual_src_vocab_size": config.get( "actual_src_vocab_size", config.get("src_vocab_size") ), "actual_tgt_vocab_size": config.get( "actual_tgt_vocab_size", config.get("tgt_vocab_size") ), "emb_size": config.get("emb_size"), "nhead": config.get("nhead"), "ffn_hid_dim": config.get("ffn_hid_dim"), "num_encoder_layers": config.get("num_encoder_layers"), "num_decoder_layers": config.get("num_decoder_layers"), "dropout": config.get("dropout"), "max_len": config.get("max_len"), "pad_token_id": config.get( "pad_token_id" ), # Use default if missing? Risky. "bos_token_id": config.get( "bos_token_id" ), # Use default if missing? Risky. "eos_token_id": config.get( "eos_token_id" ), # Use default if missing? Risky. } # Update config with potentially remapped values config.update(config_key_mapping) missing_keys = [key for key in required_keys if config.get(key) is None] if missing_keys: # Try to load defaults for token IDs if absolutely necessary, but warn heavily defaults_used = [] # Re-check missing keys after attempting defaults missing_keys = [key for key in required_keys if config.get(key) is None] if missing_keys: raise ValueError( f"Config file '{CONFIG_FILENAME}' is missing required keys: {missing_keys}. " f"Ensure these were saved in the hyperparameters during training." ) else: logging.warning( f"Config file was missing keys, used defaults for: {defaults_used}. This might be incorrect!" ) # Log the final config values being used logging.info( f"Using config values: src_vocab={config['actual_src_vocab_size']}, tgt_vocab={config['actual_tgt_vocab_size']}, " f"emb={config['emb_size']}, nhead={config['nhead']}, enc={config['num_encoder_layers']}, dec={config['num_decoder_layers']}, " f"pad={config['pad_token_id']}, sos={config['bos_token_id']}, eos={config['eos_token_id']}, max_len={config['max_len']}" ) except FileNotFoundError: logging.error( f"Config file not found locally after download attempt: {config_path}" ) raise gr.Error( f"Config Error: Config file '{CONFIG_FILENAME}' not found. Check file exists in repo." ) except json.JSONDecodeError as e: logging.error(f"Error decoding JSON from config file {config_path}: {e}") raise gr.Error( f"Config Error: Could not parse '{CONFIG_FILENAME}'. Check its format. Error: {e}" ) except ValueError as e: # Catch our custom validation error logging.error(f"Config validation error: {e}") raise gr.Error(f"Config Error: {e}") except Exception as e: # Catch other potential errors during config processing logging.error( f"Unexpected error loading or validating config: {e}", exc_info=True ) raise gr.Error( f"Config Error: Unexpected error processing config. Check logs. Error: {e}" ) # Load tokenizers logging.info("Loading tokenizers...") try: smiles_tokenizer = Tokenizer.from_file(smiles_tokenizer_path) iupac_tokenizer = Tokenizer.from_file(iupac_tokenizer_path) logging.info("Tokenizers loaded.") # --- Validate Tokenizer Special Tokens Against Config --- pad_token = "" sos_token = "" eos_token = "" unk_token = "" issues = [] if smiles_tokenizer.token_to_id(pad_token) != config["pad_token_id"]: issues.append( f"SMILES PAD ID mismatch (tokenizer={smiles_tokenizer.token_to_id(pad_token)}, config={config['pad_token_id']})" ) if smiles_tokenizer.token_to_id(unk_token) is None: issues.append("SMILES UNK token not found") if iupac_tokenizer.token_to_id(pad_token) != config["pad_token_id"]: issues.append( f"IUPAC PAD ID mismatch (tokenizer={iupac_tokenizer.token_to_id(pad_token)}, config={config['pad_token_id']})" ) if iupac_tokenizer.token_to_id(sos_token) != config["bos_token_id"]: issues.append( f"IUPAC SOS ID mismatch (tokenizer={iupac_tokenizer.token_to_id(sos_token)}, config={config['bos_token_id']})" ) if iupac_tokenizer.token_to_id(eos_token) != config["eos_token_id"]: issues.append( f"IUPAC EOS ID mismatch (tokenizer={iupac_tokenizer.token_to_id(eos_token)}, config={config['eos_token_id']})" ) if iupac_tokenizer.token_to_id(unk_token) is None: issues.append("IUPAC UNK token not found") if issues: logging.warning( "Tokenizer validation issues detected: " + "; ".join(issues) ) # Decide if this is fatal or just a warning # raise gr.Error("Tokenizer Error: Special token IDs mismatch config. Check tokenizers and config.json.") # Make it fatal if IDs must match except Exception as e: logging.error( f"Failed to load tokenizers from {smiles_tokenizer_path} or {iupac_tokenizer_path}: {e}", exc_info=True, ) raise gr.Error( f"Tokenizer Error: Could not load tokenizer files. Check Space logs. Error: {e}" ) # Load model logging.info("Loading model from checkpoint...") try: # Load the LightningModule state dict # Use the actual vocab sizes and hparams from the loaded config model = SmilesIupacLitModule.load_from_checkpoint( checkpoint_path, # Pass necessary __init__ args that might not be in saved hparams automatically # Ensure these keys exist in your loaded 'config' dict after validation/mapping src_vocab_size=config["actual_src_vocab_size"], tgt_vocab_size=config["actual_tgt_vocab_size"], hparams_dict=config, # Pass the loaded config as hparams map_location=device, # Map model to the chosen device (CPU or CUDA) strict=False, # Be less strict about matching keys, useful for PTL versions or minor changes # REMOVED invalid argument: device="cpu", ) # Ensure model is on the correct device, in eval mode, and frozen model.to(device) model.eval() model.freeze() # Disables gradient calculations logging.info( f"Model loaded successfully from {checkpoint_path}, set to eval mode, frozen, and moved to device '{device}'." ) except FileNotFoundError: logging.error( f"Checkpoint file not found locally after download attempt: {checkpoint_path}" ) raise gr.Error( f"Model Error: Checkpoint file '{CHECKPOINT_FILENAME}' not found." ) except Exception as e: logging.error( f"Error loading model from checkpoint {checkpoint_path}: {e}", exc_info=True, ) # Check for common errors if "size mismatch" in str(e): error_detail = ( f"Potential size mismatch. Check if vocab sizes in config.json ({config.get('actual_src_vocab_size')}, " f"{config.get('actual_tgt_vocab_size')}) match the loaded checkpoint's embedding layers." ) logging.error(error_detail) raise gr.Error(f"Model Error: {error_detail} Original error: {e}") elif "memory" in str(e).lower(): logging.warning("Potential Out-of-Memory error during model loading.") gc.collect() if device.type == "cuda": torch.cuda.empty_cache() raise gr.Error( f"Model Error: Out of memory loading model. Check Space resources. Error: {e}" ) else: raise gr.Error( f"Model Error: Failed to load model checkpoint. Check Space logs. Error: {e}" ) except gr.Error: # Re-raise Gradio errors to be displayed raise except Exception as e: # Catch any other unexpected errors logging.error( f"Unexpected error during model/tokenizer loading: {e}", exc_info=True ) raise gr.Error( f"Initialization Error: An unexpected error occurred. Check Space logs. Error: {e}" ) # --- Inference Function for Gradio --- def predict_iupac(smiles_string, beam_width_str, n_best_str): """ Performs SMILES to IUPAC translation using the loaded model and beam search. Takes string inputs from Gradio sliders/inputs and converts them. """ global model, smiles_tokenizer, iupac_tokenizer, device, config if not all([model, smiles_tokenizer, iupac_tokenizer, device, config]): error_msg = "Error: Model or tokenizers not loaded properly. App initialization might have failed. Check Space logs." logging.error(error_msg) # Try to determine n_best for error output formatting try: n_best_int = int(n_best_str) except: n_best_int = 1 return "\n".join([f"{i + 1}. {error_msg}" for i in range(n_best_int)]) if not smiles_string or not smiles_string.strip(): error_msg = "Error: Please enter a valid SMILES string." try: n_best_int = int(n_best_str) except: n_best_int = 1 return "\n".join([f"{i + 1}. {error_msg}" for i in range(n_best_int)]) smiles_input = smiles_string.strip() # --- Safely parse numerical inputs --- try: beam_width = int(beam_width_str) n_best = int(n_best_str) if beam_width < 1 or n_best < 1 or n_best > beam_width: raise ValueError( "Beam width and n_best must be >= 1, and n_best <= beam width." ) except ValueError as e: error_msg = f"Error: Invalid input parameter ({e}). Please check beam width, n_best, and length penalty values." logging.error(error_msg) # Cannot determine n_best if its input was invalid, default to 1 error line return f"1. {error_msg}" try: # --- Call the core translation logic --- # Retrieve necessary IDs from the loaded config sos_idx = config["bos_token_id"] eos_idx = config["eos_token_id"] pad_idx = config["pad_token_id"] gen_max_len = config["max_len"] # Max length for generation predicted_names = translate( model=model, src_sentence=smiles_input, smiles_tokenizer=smiles_tokenizer, iupac_tokenizer=iupac_tokenizer, device=device, max_len=gen_max_len, # Pass generation length limit sos_idx=sos_idx, eos_idx=eos_idx, pad_idx=pad_idx, beam_width=beam_width, n_best=n_best, length_penalty=0.0, ) logging.info(f"Predictions returned: {predicted_names}") # --- Format Output --- if not predicted_names: output_text = f"Input SMILES: {smiles_input}\n\nNo predictions generated (beam search might have failed)." else: # Ensure we only display up to n_best results, even if translate returned more/fewer due to errors display_names = predicted_names[:n_best] output_text = ( f"Input SMILES: {smiles_input}\n\n" f"Top {len(display_names)} Predictions (Beam Width={beam_width}, Length Penalty={length_penalty:.2f}):\n" ) output_text += "\n".join( [f"{i + 1}. {name}" for i, name in enumerate(display_names)] ) # Add a note if fewer results than requested were generated if len(display_names) < n_best: output_text += f"\n\nNote: Only {len(display_names)} result(s) generated successfully." return output_text except RuntimeError as e: logging.error(f"Runtime error during translation: {e}", exc_info=True) error_msg = f"Runtime Error during translation: {e}" if "memory" in str(e).lower(): gc.collect() if device.type == "cuda": torch.cuda.empty_cache() error_msg += " (Potential OOM - try reducing beam width or input length)" # Return n_best error messages return "\n".join([f"{i + 1}. {error_msg}" for i in range(n_best)]) except Exception as e: logging.error(f"Unexpected error during translation: {e}", exc_info=True) error_msg = f"Unexpected Error during translation: {e}" return "\n".join([f"{i + 1}. {error_msg}" for i in range(n_best)]) # --- Load Model on App Start --- # Wrap in try/except to prevent app from crashing completely if loading fails # The error should be caught and displayed by Gradio via gr.Error raised in the function. try: load_model_and_tokenizers() except gr.Error as ge: logging.error(f"Gradio Initialization Error: {ge}") # Gradio handles displaying gr.Error, but we log it too. # We might want to display a placeholder UI or message if loading fails critically. pass # Allow Gradio to potentially start with an error message except Exception as e: # Catch any non-Gradio errors during the initial load sequence logging.error( f"Critical error during initial model loading sequence: {e}", exc_info=True ) # Optionally raise gr.Error here too, although it might be too late if Gradio hasn't fully initialized. # raise gr.Error(f"Fatal Initialization Error: {e}. Check Space logs.") # --- Create Gradio Interface --- title = "SMILES to IUPAC Name Translator" description = f""" Enter a SMILES string to translate it into its IUPAC chemical name using a Transformer model ({MODEL_REPO_ID}) trained via PyTorch Lightning. Translation uses beam search decoding. Adjust parameters below. **Note:** Model loaded on **{str(device).upper()}**. Performance may vary. Check `config.json` in the repo for model details. """ # Define examples using the input types expected by the interface examples = [ ["CCO", 5, 3, 0.6], # Ethanol ["C1=CC=CC=C1", 5, 3, 0.6], # Benzene ["CC(=O)Oc1ccccc1C(=O)O", 5, 3, 0.6], # Aspirin ["CC(C)CC1=CC=C(C=C1)C(C)C(=O)O", 5, 3, 0.6], # Ibuprofen # Very complex example - might take time or fail on CPU/low memory # ["CC1=C(C=C(C=C1)NC(=O)C2=CC=C(C=C2)CN3CCN(CC3)C)NC4=NC=C(C(=N4)C5=CC=CC=C5)C", 8, 1, 0.7], # Gleevec (Imatinib) - simplified SMILES structure ["INVALID_SMILES", 3, 1, 0.6], # Example of invalid input ] # Ensure input components match the `predict_iupac` function signature order and types smiles_input = gr.Textbox( label="SMILES String", placeholder="Enter SMILES string here (e.g., CCO for Ethanol)", lines=1, ) # Use number inputs for sliders if direct type casting is desired, but sliders often return float/int anyway beam_width_input = gr.Slider( minimum=1, maximum=10, value=5, step=1, label="Beam Width (k)", info="Number of sequences kept at each step (higher = more exploration, slower). Affects memory usage.", ) n_best_input = gr.Slider( minimum=1, maximum=10, value=3, step=1, label="Number of Results (n_best)", info="How many top sequences to return (must be <= Beam Width).", ) output_text = gr.Textbox( label="Predicted IUPAC Name(s)", lines=5, show_copy_button=True ) # Create the interface instance iface = gr.Interface( fn=predict_iupac, # The function to call inputs=[ # List of input components smiles_input, beam_width_input, n_best_input, ], outputs=output_text, # Output component title=title, description=description, examples=examples, # Examples to populate the interface allow_flagging="never", # Disable flagging theme=gr.themes.Soft(primary_hue="blue", secondary_hue="cyan"), # Optional theme article=""" **Limitations:** Translation quality depends heavily on the model size, training data, and the complexity of the SMILES input. Very long or unusual SMILES strings may result in errors, timeouts, or inaccurate translations. Beam search parameters (width, penalty) significantly impact results and performance. """, # Optional: Add live=True for real-time updates as sliders change (can be slow/resource intensive) # live=False, ) # --- Launch the App --- if __name__ == "__main__": iface.launch()