File size: 33,560 Bytes
06f87ee
 
 
 
77dbca6
06f87ee
 
5cee7bc
76c554c
 
 
 
77dbca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbcd9e2
 
76c554c
dbcd9e2
77dbca6
 
 
dbcd9e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77dbca6
dbcd9e2
 
 
 
77dbca6
 
dbcd9e2
77dbca6
dbcd9e2
76c554c
dbcd9e2
77dbca6
dbcd9e2
76c554c
 
 
dbcd9e2
76c554c
 
 
 
 
 
 
 
dbcd9e2
 
 
 
 
77dbca6
 
06f87ee
76c554c
ac98842
06f87ee
76c554c
dbcd9e2
76c554c
77dbca6
9f8b4b9
76c554c
 
dbcd9e2
5cee7bc
 
 
77dbca6
dbcd9e2
77dbca6
 
dbcd9e2
 
77dbca6
 
 
 
 
 
 
 
dbcd9e2
 
77dbca6
 
 
 
 
 
 
 
 
ac98842
 
77dbca6
 
ac98842
77dbca6
 
 
 
 
 
 
5cee7bc
76c554c
5cee7bc
 
48294e4
dbcd9e2
77dbca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac98842
c24aa0c
5cee7bc
dbcd9e2
 
 
ac98842
dbcd9e2
 
 
 
 
 
 
 
 
 
 
77dbca6
dbcd9e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77dbca6
ac98842
 
77dbca6
ac98842
77dbca6
 
 
 
 
 
 
 
 
 
 
 
ac98842
 
77dbca6
 
 
 
 
 
 
 
 
 
 
5cee7bc
dbcd9e2
 
 
 
5cee7bc
dbcd9e2
 
 
 
 
 
5cee7bc
dbcd9e2
 
 
 
5cee7bc
dbcd9e2
 
 
 
 
 
5cee7bc
 
dbcd9e2
 
77dbca6
 
 
 
 
 
 
 
 
 
5cee7bc
77dbca6
 
 
 
 
 
 
ac98842
77dbca6
 
 
 
 
 
 
 
 
 
 
dbcd9e2
77dbca6
 
 
ac98842
 
 
77dbca6
 
ac98842
 
 
77dbca6
 
 
 
 
 
 
 
5cee7bc
ac98842
76c554c
ac98842
77dbca6
76c554c
 
 
ac98842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76c554c
ac98842
 
77dbca6
76c554c
 
 
ac98842
 
77dbca6
76c554c
 
77dbca6
 
ac98842
 
77dbca6
 
 
 
ac98842
 
77dbca6
 
 
 
ac98842
 
77dbca6
 
 
 
ac98842
 
 
 
 
77dbca6
ac98842
 
 
 
77dbca6
ac98842
77dbca6
ac98842
77dbca6
dbcd9e2
76c554c
06f87ee
77dbca6
ac98842
 
 
9069a07
ac98842
 
 
 
 
 
 
 
 
 
 
 
9f8b4b9
ac98842
 
 
9f8b4b9
ac98842
9f8b4b9
ac98842
 
 
 
 
 
 
 
 
 
 
 
 
9f8b4b9
ac98842
 
 
 
 
 
9f8b4b9
ac98842
 
 
77dbca6
ac98842
9f8b4b9
 
ac98842
 
9f8b4b9
ac98842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f8b4b9
ac98842
 
 
 
 
 
9f8b4b9
ac98842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f8b4b9
ac98842
 
9f8b4b9
ac98842
 
 
9f8b4b9
ac98842
 
 
9f8b4b9
ac98842
 
 
 
77dbca6
ac98842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77dbca6
 
 
 
ac98842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f8b4b9
ac98842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f8b4b9
ac98842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f8b4b9
 
76c554c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
import gradio as gr
import json
import os
from pathlib import Path
import time

def create_reranking_interface(task_data):
    """Create a Gradio interface for reranking evaluation."""
    samples = task_data["samples"]
    results = {"task_name": task_data["task_name"], "task_type": "reranking", "annotations": []}
    completed_samples = {s["id"]: False for s in samples}
    
    # Load existing results if available
    output_path = f"{task_data['task_name']}_human_results.json"
    if os.path.exists(output_path):
        try:
            with open(output_path, "r") as f:
                saved_results = json.load(f)
                if "annotations" in saved_results:
                    results["annotations"] = saved_results["annotations"]
                    # Update completed_samples based on loaded data
                    for annotation in saved_results["annotations"]:
                        sample_id = annotation.get("sample_id")
                        if sample_id and sample_id in completed_samples:
                            completed_samples[sample_id] = True
        except Exception as e:
            print(f"Error loading existing results: {e}")
    
    def save_ranking(rankings, sample_id):
        """Save the current set of rankings."""
        try:
            # Check if all documents have rankings
            if not rankings or len(rankings) == 0:
                return "⚠️ No rankings provided", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
                
            all_ranked = all(r is not None and r != "" for r in rankings)
            if not all_ranked:
                return "⚠️ Please assign a rank to all documents before submitting", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
            
            # Convert rankings to integers with better error handling
            try:
                processed_rankings = [int(r) for r in rankings]
            except ValueError:
                return "⚠️ Invalid ranking value. Please use only numbers.", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
            
            # Check for duplicate rankings
            if len(set(processed_rankings)) != len(processed_rankings):
                return "⚠️ Each document must have a unique rank. Please review your rankings.", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
                
            # Store this annotation in memory
            existing_idx = next((i for i, a in enumerate(results["annotations"]) if a["sample_id"] == sample_id), None)
            if existing_idx is not None:
                results["annotations"][existing_idx] = {
                    "sample_id": sample_id,
                    "rankings": processed_rankings
                }
            else:
                results["annotations"].append({
                    "sample_id": sample_id,
                    "rankings": processed_rankings
                })
            
            completed_samples[sample_id] = True
            
            # Always save to file for redundancy
            try:
                output_path = f"{task_data['task_name']}_human_results.json"
                with open(output_path, "w") as f:
                    json.dump(results, f, indent=2)
                return f"βœ… Rankings saved successfully", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
            except Exception as file_error:
                # If file saving fails, still mark as success since we saved in memory
                print(f"File save error: {file_error}")
                return f"βœ… Rankings saved in memory (file save failed)", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
        except Exception as e:
            # Return specific error message
            print(f"Save ranking error: {e}")
            return f"Error: {str(e)}", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
    
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown(f"# {task_data['task_name']} - Human Reranking Evaluation")
        
        with gr.Accordion("Instructions", open=True):
            gr.Markdown("""
            ## Task Instructions
            
            {instructions}
            
            ### How to use this interface:
            1. Read the query at the top
            2. Review each document carefully
            3. Assign a rank to each document (1 = most relevant, higher numbers = less relevant)
            4. Each document must have a unique rank
            5. Click "Submit Rankings" when you're done with the current query
            6. Use "Previous" and "Next" to navigate between queries
            7. Your rankings are automatically saved when you submit or navigate
            """.format(instructions=task_data.get("instructions", "Rank documents by their relevance to the query.")))
        
        current_sample_id = gr.State(value=samples[0]["id"])
        auto_save_enabled = gr.State(value=True)
        
        with gr.Row():
            progress_text = gr.Textbox(label="Progress", value=f"Progress: 0/{len(samples)}", interactive=False)
            status_box = gr.Textbox(label="Status", value="Ready to start evaluation", interactive=False)
            auto_save_toggle = gr.Checkbox(label="Auto-save when navigating", value=True)
        
        with gr.Group():
            gr.Markdown("## Query:")
            query_text = gr.Textbox(value=samples[0]["query"], label="", interactive=False)
            
            gr.Markdown("## Documents to Rank:")
            
            # Create document displays and ranking inputs in synchronized pairs
            doc_containers = []
            ranking_inputs = []
            validation_indicators = []
            
            with gr.Column():
                # Quick ranking tools
                with gr.Row():
                    gr.Markdown("### Quick Ranking Options:")
                    sequential_btn = gr.Button("Rank in Order (1,2,3...)")
                    reverse_btn = gr.Button("Reverse Order (n,n-1,...)")
                    clear_btn = gr.Button("Clear All Rankings")
                
                # Document display with better UI for ranking
                for i, doc in enumerate(samples[0]["candidates"]):
                    with gr.Row():
                        with gr.Column(scale=4):
                            doc_box = gr.Textbox(
                                value=doc, 
                                label=f"Document {i+1}",
                                interactive=False
                            )
                            doc_containers.append(doc_box)
                        
                        with gr.Column(scale=1):
                            # Use Dropdown instead of Radio for compatibility with Gradio 3.x
                            rank_input = gr.Dropdown(
                                choices=[str(j) for j in range(1, len(samples[0]["candidates"])+1)],
                                label=f"Rank",
                                value=""
                            )
                            ranking_inputs.append(rank_input)
                        
                        # Add validation indicator
                        with gr.Column(scale=1, min_width=50):
                            validation = gr.HTML(value="")
                            validation_indicators.append(validation)
            
            with gr.Row():
                prev_btn = gr.Button("← Previous Query", size="sm")
                submit_btn = gr.Button("Submit Rankings", size="lg", variant="primary")
                next_btn = gr.Button("Next Query β†’", size="sm")
            
            with gr.Row():
                save_btn = gr.Button("πŸ’Ύ Save All Results", variant="secondary")
                results_info = gr.HTML(value=f"<p>Results will be saved to <code>{task_data['task_name']}_human_results.json</code></p>")
        
        def validate_rankings(*rankings):
            """Validate rankings and update indicators."""
            results = []
            all_valid = True
            for rank in rankings:
                if rank is None or rank == "":
                    results.append("⚠️")
                    all_valid = False
                else:
                    results.append("βœ“")
            
            return results + [all_valid]  # Return validation indicators and validity flag
        
        def load_sample(sample_id):
            """Load a specific sample into the interface."""
            sample = next((s for s in samples if s["id"] == sample_id), None)
            if not sample:
                return [query_text.value] + [d.value for d in doc_containers] + [""] * len(ranking_inputs) + [""] * len(validation_indicators) + [sample_id, progress_text.value, status_box.value]
            
            # Update query
            new_query = sample["query"]
            
            # Update documents
            new_docs = []
            for i, doc in enumerate(sample["candidates"]):
                if i < len(doc_containers):
                    new_docs.append(doc)
                    
            # Initialize rankings
            new_rankings = [""] * len(ranking_inputs)
            
            # Check if this sample has already been annotated
            existing_annotation = next((a for a in results["annotations"] if a["sample_id"] == sample_id), None)
            if existing_annotation:
                # Restore previous rankings
                for i, rank in enumerate(existing_annotation["rankings"]):
                    if i < len(new_rankings) and rank is not None:
                        new_rankings[i] = str(rank)
            
            # Update progress
            current_idx = samples.index(sample)
            new_progress = f"Progress: {sum(completed_samples.values())}/{len(samples)}"
            
            new_status = f"Viewing query {current_idx + 1} of {len(samples)}"
            if completed_samples[sample_id]:
                new_status += " (already completed)"
            
            # Initialize validation indicators
            validation_results = validate_rankings(*new_rankings)
            validation_indicators_values = validation_results[:-1]  # Remove validity flag
            
            return [new_query] + new_docs + new_rankings + validation_indicators_values + [sample_id, new_progress, new_status]
        
        def auto_save_and_navigate(direction, current_id, auto_save, *rankings):
            """Save rankings if auto-save is enabled, then navigate."""
            # Extract rankings (remove validation indicators)
            actual_rankings = rankings[:len(ranking_inputs)]
            
            # If auto-save is enabled, try to save the current rankings
            status_msg = ""
            progress_msg = f"Progress: {sum(completed_samples.values())}/{len(samples)}"
            
            if auto_save:
                # Only save if all rankings are provided
                validation_results = validate_rankings(*actual_rankings)
                all_valid = validation_results[-1]  # Last item is validity flag
                if all_valid:
                    status_msg, progress_msg = save_ranking(actual_rankings, current_id)
            
            # Navigate to the next/previous sample
            if direction == "next":
                new_id = next_sample(current_id)
            else:
                new_id = prev_sample(current_id)
            
            # Return the new sample ID and status message
            return new_id, status_msg, progress_msg
        
        def next_sample(current_id):
            """Load the next sample."""
            current_sample = next((s for s in samples if s["id"] == current_id), None)
            if not current_sample:
                return current_id
            
            current_idx = samples.index(current_sample)
            if current_idx < len(samples) - 1:
                next_sample = samples[current_idx + 1]
                return next_sample["id"]
            return current_id
        
        def prev_sample(current_id):
            """Load the previous sample."""
            current_sample = next((s for s in samples if s["id"] == current_id), None)
            if not current_sample:
                return current_id
            
            current_idx = samples.index(current_sample)
            if current_idx > 0:
                prev_sample = samples[current_idx - 1]
                return prev_sample["id"]
            return current_id
        
        def save_results():
            """Save all collected results to a file."""
            output_path = f"{task_data['task_name']}_human_results.json"
            try:
                with open(output_path, "w") as f:
                    json.dump(results, f, indent=2)
                return f"βœ… Results saved to {output_path} ({len(results['annotations'])} annotations)"
            except Exception as e:
                return f"Error saving results: {str(e)}"
        
        # Function to assign sequential ranks
        def assign_sequential_ranks():
            return [str(i+1) for i in range(len(samples[0]["candidates"]))]
        
        # Function to assign reverse ranks
        def assign_reverse_ranks():
            n = len(samples[0]["candidates"])
            return [str(n-i) for i in range(n)]
        
        # Function to clear all rankings
        def clear_rankings():
            return [""] * len(samples[0]["candidates"])
        
        # Define a function that collects all ranking values and validates them
        def submit_rankings(*args):
            # Get the last argument (sample_id) and the rankings
            if len(args) < 1:
                return "Error: No arguments provided", progress_text.value
            
            # Verify we have enough rankings
            if len(args) < len(ranking_inputs) + 1:
                return "Error: Not enough ranking inputs provided", progress_text.value
            
            sample_id = args[-1]
            rankings = args[:len(ranking_inputs)]
            
            # First validate the rankings
            validation_results = validate_rankings(*rankings)
            all_valid = validation_results[-1]  # Last item is validity flag
            validation_indicators_values = validation_results[:-1]  # Remove validity flag
            
            # Update validation indicators
            for i, result in enumerate(validation_indicators_values):
                if i < len(validation_indicators):
                    validation_indicators[i].update(value=result)
            
            # If not all valid, return error message
            if not all_valid:
                return "⚠️ Please assign a rank to all documents before submitting", progress_text.value
            
            # Save the validated rankings
            status, progress = save_ranking(rankings, sample_id)
            return status, progress
        
        # Wire up events (Gradio 3.x syntax)
        submit_btn.click(
            fn=submit_rankings,
            inputs=ranking_inputs + [current_sample_id],
            outputs=[status_box, progress_text]
        )
        
        # Auto-save and navigate events
        def handle_next(current_id, auto_save, *rankings):
            # First, handle auto-save
            new_id, status, progress = auto_save_and_navigate("next", current_id, auto_save, *rankings)
            # Then, load the new sample
            outputs = load_sample(new_id)
            # Add the status and progress
            outputs[-2] = progress if status else outputs[-2]
            outputs[-1] = status if status else outputs[-1]
            return outputs
        
        def handle_prev(current_id, auto_save, *rankings):
            # First, handle auto-save
            new_id, status, progress = auto_save_and_navigate("prev", current_id, auto_save, *rankings)
            # Then, load the new sample
            outputs = load_sample(new_id)
            # Add the status and progress
            outputs[-2] = progress if status else outputs[-2]
            outputs[-1] = status if status else outputs[-1]
            return outputs
        
        # Connect navigation with Gradio 3.x syntax
        next_btn.click(
            fn=handle_next,
            inputs=[current_sample_id, auto_save_toggle] + ranking_inputs,
            outputs=[query_text] + doc_containers + ranking_inputs + validation_indicators + [current_sample_id, progress_text, status_box]
        )
        
        prev_btn.click(
            fn=handle_prev,
            inputs=[current_sample_id, auto_save_toggle] + ranking_inputs,
            outputs=[query_text] + doc_containers + ranking_inputs + validation_indicators + [current_sample_id, progress_text, status_box]
        )
        
        # Connect quick ranking buttons
        sequential_btn.click(
            fn=assign_sequential_ranks,
            inputs=None,
            outputs=ranking_inputs
        )
        
        reverse_btn.click(
            fn=assign_reverse_ranks,
            inputs=None,
            outputs=ranking_inputs
        )
        
        clear_btn.click(
            fn=clear_rankings,
            inputs=None,
            outputs=ranking_inputs
        )
        
        # Connect save button
        save_btn.click(
            fn=save_results,
            inputs=None,
            outputs=[status_box]
        )
        
        # Connect auto-save toggle
        def update_auto_save(enabled):
            return enabled
            
        auto_save_toggle.change(
            fn=update_auto_save,
            inputs=[auto_save_toggle],
            outputs=[auto_save_enabled]
        )
    
    return demo

# Main app with file upload capability and improved task management
def create_main_app():
    with gr.Blocks(theme=gr.themes.Soft()) as app:
        gr.Markdown("# MTEB Human Evaluation Demo")
        
        task_container = gr.HTML()
        loaded_task_info = gr.JSON(label="Loaded Task Information", visible=False)
        
        tabs = gr.Tabs()
        
        with tabs:
            with gr.TabItem("Demo"):
                gr.Markdown("""
                ## MTEB Human Evaluation Interface
                
                This interface allows you to evaluate the relevance of documents for reranking tasks.
                """)
                
                # Function to get the most recent task file
                def get_latest_task_file():
                    # Check first in uploaded_tasks directory
                    os.makedirs("uploaded_tasks", exist_ok=True)
                    uploaded_tasks = [f for f in os.listdir("uploaded_tasks") if f.endswith(".json")]
                    
                    if uploaded_tasks:
                        # Sort by modification time, newest first
                        uploaded_tasks.sort(key=lambda x: os.path.getmtime(os.path.join("uploaded_tasks", x)), reverse=True)
                        task_path = os.path.join("uploaded_tasks", uploaded_tasks[0])
                        
                        # Verify this is a valid task file
                        try:
                            with open(task_path, "r") as f:
                                task_data = json.load(f)
                                if "task_name" in task_data and "samples" in task_data:
                                    return task_path
                        except:
                            pass
                    
                    # Look for task files in the current directory
                    current_dir_tasks = [f for f in os.listdir(".") if f.endswith("_human_eval.json")]
                    if current_dir_tasks:
                        # Sort by modification time, newest first
                        current_dir_tasks.sort(key=lambda x: os.path.getmtime(x), reverse=True)
                        return current_dir_tasks[0]
                    
                    # Fall back to fixed example if available
                    if os.path.exists("AskUbuntuDupQuestions_human_eval.json"):
                        return "AskUbuntuDupQuestions_human_eval.json"
                    
                    # No valid task file found
                    return None
                
                # Load the task file
                task_file = get_latest_task_file()
                
                if task_file:
                    try:
                        with open(task_file, "r") as f:
                            task_data = json.load(f)
                        
                        # Show which task is currently loaded
                        gr.Markdown(f"**Current Task: {task_data['task_name']}** ({len(task_data['samples'])} samples)")
                        
                        # Display the interface
                        demo = create_reranking_interface(task_data)
                        task_container.update(value=f"<p>Task loaded: {task_file}</p>")
                    except Exception as e:
                        gr.Markdown(f"**Error loading task: {str(e)}**")
                        gr.Markdown("Please upload a valid task file in the 'Upload & Evaluate' tab.")
                else:
                    gr.Markdown("**No task file found**")
                    gr.Markdown("Please upload a valid task file in the 'Upload & Evaluate' tab.")
            
            with gr.TabItem("Upload & Evaluate"):
                gr.Markdown("""
                ## Upload Your Own Task File
                
                If you have a prepared task file, you can upload it here to create an evaluation interface.
                """)
                
                with gr.Row():
                    with gr.Column(scale=1):
                        file_input = gr.File(label="Upload a task file (JSON)")
                        load_btn = gr.Button("Load Task")
                        message = gr.Textbox(label="Status", interactive=False)
                        
                        # Add task list for previously uploaded tasks
                        gr.Markdown("### Previous Uploads")
                        
                        # Function to list existing task files in the tasks directory
                        def list_task_files():
                            os.makedirs("uploaded_tasks", exist_ok=True)
                            tasks = [f for f in os.listdir("uploaded_tasks") if f.endswith(".json")]
                            if not tasks:
                                return "No task files uploaded yet."
                            return "\n".join([f"- {t}" for t in tasks])
                        
                        task_list = gr.Markdown(list_task_files())
                        refresh_btn = gr.Button("Refresh List")
                        
                        # Add results management section
                        gr.Markdown("### Results Management")
                        
                        # Function to list existing result files
                        def list_result_files():
                            results = [f for f in os.listdir(".") if f.endswith("_human_results.json")]
                            if not results:
                                return "No result files available yet."
                            
                            result_links = []
                            for r in results:
                                # Calculate completion stats
                                try:
                                    with open(r, "r") as f:
                                        result_data = json.load(f)
                                    annotation_count = len(result_data.get("annotations", []))
                                    task_name = result_data.get("task_name", "Unknown")
                                    result_links.append(f"- {r} ({annotation_count} annotations for {task_name})")
                                except:
                                    result_links.append(f"- {r}")
                            
                            return "\n".join(result_links)
                        
                        results_list = gr.Markdown(list_result_files())
                        download_results_btn = gr.Button("Download Results")
                
                # Handle file upload and storage
                def handle_upload(file):
                    if not file:
                        return "Please upload a task file", task_list.value, ""
                    
                    try:
                        # Create directory if it doesn't exist
                        os.makedirs("uploaded_tasks", exist_ok=True)
                        
                        # Read the uploaded file
                        with open(file.name, "r") as f:
                            task_data = json.load(f)
                        
                        # Validate task format
                        if "task_name" not in task_data or "samples" not in task_data:
                            return "Invalid task file format. Must contain 'task_name' and 'samples' fields.", task_list.value, ""
                        
                        # Save to a consistent location
                        task_filename = f"uploaded_tasks/{task_data['task_name']}_task.json"
                        with open(task_filename, "w") as f:
                            json.dump(task_data, f, indent=2)
                        
                        return f"Task '{task_data['task_name']}' uploaded successfully with {len(task_data['samples'])} samples. Please refresh the app and use the Demo tab to evaluate it.", list_task_files(), f"""
                        <div style="padding: 20px; background-color: #f0f0f0; border-radius: 10px;">
                            <h3>Task uploaded successfully!</h3>
                            <p>Task Name: {task_data['task_name']}</p>
                            <p>Samples: {len(task_data['samples'])}</p>
                            <p>To evaluate this task:</p>
                            <ol>
                                <li>Refresh the app</li>
                                <li>The Demo tab will now use your uploaded task</li>
                                <li>Complete your evaluations</li>
                                <li>Results will be saved as {task_data['task_name']}_human_results.json</li>
                            </ol>
                        </div>
                        """
                    except Exception as e:
                        return f"Error processing task file: {str(e)}", task_list.value, ""
                
                # Function to prepare results for download
                def prepare_results_for_download():
                    results = [f for f in os.listdir(".") if f.endswith("_human_results.json")]
                    if not results:
                        return None
                    
                    # Create a zip file with all results
                    import zipfile
                    zip_path = "mteb_human_eval_results.zip"
                    with zipfile.ZipFile(zip_path, 'w') as zipf:
                        for r in results:
                            zipf.write(r)
                    
                    return zip_path
                
                # Connect events
                load_btn.click(
                    fn=handle_upload,
                    inputs=[file_input],
                    outputs=[message, task_list, task_container]
                )
                
                refresh_btn.click(
                    fn=list_task_files,
                    inputs=None,
                    outputs=[task_list]
                )
                
                download_results_btn.click(
                    fn=prepare_results_for_download,
                    inputs=None,
                    outputs=[gr.File(label="Download Results")]
                )
            
            with gr.TabItem("Results Management"):
                gr.Markdown("""
                ## Manage Evaluation Results
                
                View, download, and analyze your evaluation results.
                """)
                
                # Function to load and display result stats
                def get_result_stats():
                    results = [f for f in os.listdir(".") if f.endswith("_human_results.json")]
                    if not results:
                        return "No result files available yet."
                    
                    stats = []
                    for r in results:
                        try:
                            with open(r, "r") as f:
                                result_data = json.load(f)
                            
                            task_name = result_data.get("task_name", "Unknown")
                            annotations = result_data.get("annotations", [])
                            annotation_count = len(annotations)
                            
                            # Calculate completion percentage
                            sample_ids = set(a.get("sample_id") for a in annotations)
                            
                            # Try to get the total sample count from the corresponding task file
                            total_samples = 0
                            
                            # Try uploaded_tasks directory first
                            task_file = f"uploaded_tasks/{task_name}_task.json"
                            if os.path.exists(task_file):
                                with open(task_file, "r") as f:
                                    task_data = json.load(f)
                                total_samples = len(task_data.get("samples", []))
                            else:
                                # Try human_eval file in current directory
                                task_file = f"{task_name}_human_eval.json"
                                if os.path.exists(task_file):
                                    with open(task_file, "r") as f:
                                        task_data = json.load(f)
                                    total_samples = len(task_data.get("samples", []))
                            
                            completion = f"{len(sample_ids)}/{total_samples}" if total_samples else f"{len(sample_ids)} samples"
                            
                            stats.append(f"### {task_name}\n- Annotations: {annotation_count}\n- Completion: {completion}\n- File: {r}")
                        except Exception as e:
                            stats.append(f"### {r}\n- Error loading results: {str(e)}")
                    
                    return "\n\n".join(stats)
                
                result_stats = gr.Markdown(get_result_stats())
                refresh_results_btn = gr.Button("Refresh Results")
                
                # Add download options
                with gr.Row():
                    download_all_btn = gr.Button("Download All Results (ZIP)")
                    result_select = gr.Dropdown(choices=[f for f in os.listdir(".") if f.endswith("_human_results.json")], label="Select Result to Download")
                    download_selected_btn = gr.Button("Download Selected")
                
                # Function to prepare all results for download as ZIP
                def prepare_all_results():
                    import zipfile
                    zip_path = "mteb_human_eval_results.zip"
                    with zipfile.ZipFile(zip_path, 'w') as zipf:
                        for r in [f for f in os.listdir(".") if f.endswith("_human_results.json")]:
                            zipf.write(r)
                    return zip_path
                
                # Function to return a single result file
                def get_selected_result(filename):
                    if not filename:
                        return None
                    if os.path.exists(filename):
                        return filename
                    return None
                
                # Update dropdown when refreshing results
                def update_result_dropdown():
                    return gr.Dropdown.update(choices=[f for f in os.listdir(".") if f.endswith("_human_results.json")])
                
                # Connect events
                refresh_results_btn.click(
                    fn=get_result_stats,
                    inputs=None,
                    outputs=[result_stats]
                )
                
                refresh_results_btn.click(
                    fn=update_result_dropdown,
                    inputs=None,
                    outputs=[result_select]
                )
                
                download_all_btn.click(
                    fn=prepare_all_results,
                    inputs=None,
                    outputs=[gr.File(label="Download All Results")]
                )
                
                download_selected_btn.click(
                    fn=get_selected_result,
                    inputs=[result_select],
                    outputs=[gr.File(label="Download Selected Result")]
                )
    
    return app

# Create the app
demo = create_main_app()

if __name__ == "__main__":
    demo.launch()