Spaces:
Sleeping
Sleeping
File size: 33,560 Bytes
06f87ee 77dbca6 06f87ee 5cee7bc 76c554c 77dbca6 dbcd9e2 76c554c dbcd9e2 77dbca6 dbcd9e2 77dbca6 dbcd9e2 77dbca6 dbcd9e2 77dbca6 dbcd9e2 76c554c dbcd9e2 77dbca6 dbcd9e2 76c554c dbcd9e2 76c554c dbcd9e2 77dbca6 06f87ee 76c554c ac98842 06f87ee 76c554c dbcd9e2 76c554c 77dbca6 9f8b4b9 76c554c dbcd9e2 5cee7bc 77dbca6 dbcd9e2 77dbca6 dbcd9e2 77dbca6 dbcd9e2 77dbca6 ac98842 77dbca6 ac98842 77dbca6 5cee7bc 76c554c 5cee7bc 48294e4 dbcd9e2 77dbca6 ac98842 c24aa0c 5cee7bc dbcd9e2 ac98842 dbcd9e2 77dbca6 dbcd9e2 77dbca6 ac98842 77dbca6 ac98842 77dbca6 ac98842 77dbca6 5cee7bc dbcd9e2 5cee7bc dbcd9e2 5cee7bc dbcd9e2 5cee7bc dbcd9e2 5cee7bc dbcd9e2 77dbca6 5cee7bc 77dbca6 ac98842 77dbca6 dbcd9e2 77dbca6 ac98842 77dbca6 ac98842 77dbca6 5cee7bc ac98842 76c554c ac98842 77dbca6 76c554c ac98842 76c554c ac98842 77dbca6 76c554c ac98842 77dbca6 76c554c 77dbca6 ac98842 77dbca6 ac98842 77dbca6 ac98842 77dbca6 ac98842 77dbca6 ac98842 77dbca6 ac98842 77dbca6 ac98842 77dbca6 dbcd9e2 76c554c 06f87ee 77dbca6 ac98842 9069a07 ac98842 9f8b4b9 ac98842 9f8b4b9 ac98842 9f8b4b9 ac98842 9f8b4b9 ac98842 9f8b4b9 ac98842 77dbca6 ac98842 9f8b4b9 ac98842 9f8b4b9 ac98842 9f8b4b9 ac98842 9f8b4b9 ac98842 9f8b4b9 ac98842 9f8b4b9 ac98842 9f8b4b9 ac98842 9f8b4b9 ac98842 77dbca6 ac98842 77dbca6 ac98842 9f8b4b9 ac98842 9f8b4b9 ac98842 9f8b4b9 76c554c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 |
import gradio as gr
import json
import os
from pathlib import Path
import time
def create_reranking_interface(task_data):
"""Create a Gradio interface for reranking evaluation."""
samples = task_data["samples"]
results = {"task_name": task_data["task_name"], "task_type": "reranking", "annotations": []}
completed_samples = {s["id"]: False for s in samples}
# Load existing results if available
output_path = f"{task_data['task_name']}_human_results.json"
if os.path.exists(output_path):
try:
with open(output_path, "r") as f:
saved_results = json.load(f)
if "annotations" in saved_results:
results["annotations"] = saved_results["annotations"]
# Update completed_samples based on loaded data
for annotation in saved_results["annotations"]:
sample_id = annotation.get("sample_id")
if sample_id and sample_id in completed_samples:
completed_samples[sample_id] = True
except Exception as e:
print(f"Error loading existing results: {e}")
def save_ranking(rankings, sample_id):
"""Save the current set of rankings."""
try:
# Check if all documents have rankings
if not rankings or len(rankings) == 0:
return "β οΈ No rankings provided", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
all_ranked = all(r is not None and r != "" for r in rankings)
if not all_ranked:
return "β οΈ Please assign a rank to all documents before submitting", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
# Convert rankings to integers with better error handling
try:
processed_rankings = [int(r) for r in rankings]
except ValueError:
return "β οΈ Invalid ranking value. Please use only numbers.", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
# Check for duplicate rankings
if len(set(processed_rankings)) != len(processed_rankings):
return "β οΈ Each document must have a unique rank. Please review your rankings.", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
# Store this annotation in memory
existing_idx = next((i for i, a in enumerate(results["annotations"]) if a["sample_id"] == sample_id), None)
if existing_idx is not None:
results["annotations"][existing_idx] = {
"sample_id": sample_id,
"rankings": processed_rankings
}
else:
results["annotations"].append({
"sample_id": sample_id,
"rankings": processed_rankings
})
completed_samples[sample_id] = True
# Always save to file for redundancy
try:
output_path = f"{task_data['task_name']}_human_results.json"
with open(output_path, "w") as f:
json.dump(results, f, indent=2)
return f"β
Rankings saved successfully", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
except Exception as file_error:
# If file saving fails, still mark as success since we saved in memory
print(f"File save error: {file_error}")
return f"β
Rankings saved in memory (file save failed)", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
except Exception as e:
# Return specific error message
print(f"Save ranking error: {e}")
return f"Error: {str(e)}", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(f"# {task_data['task_name']} - Human Reranking Evaluation")
with gr.Accordion("Instructions", open=True):
gr.Markdown("""
## Task Instructions
{instructions}
### How to use this interface:
1. Read the query at the top
2. Review each document carefully
3. Assign a rank to each document (1 = most relevant, higher numbers = less relevant)
4. Each document must have a unique rank
5. Click "Submit Rankings" when you're done with the current query
6. Use "Previous" and "Next" to navigate between queries
7. Your rankings are automatically saved when you submit or navigate
""".format(instructions=task_data.get("instructions", "Rank documents by their relevance to the query.")))
current_sample_id = gr.State(value=samples[0]["id"])
auto_save_enabled = gr.State(value=True)
with gr.Row():
progress_text = gr.Textbox(label="Progress", value=f"Progress: 0/{len(samples)}", interactive=False)
status_box = gr.Textbox(label="Status", value="Ready to start evaluation", interactive=False)
auto_save_toggle = gr.Checkbox(label="Auto-save when navigating", value=True)
with gr.Group():
gr.Markdown("## Query:")
query_text = gr.Textbox(value=samples[0]["query"], label="", interactive=False)
gr.Markdown("## Documents to Rank:")
# Create document displays and ranking inputs in synchronized pairs
doc_containers = []
ranking_inputs = []
validation_indicators = []
with gr.Column():
# Quick ranking tools
with gr.Row():
gr.Markdown("### Quick Ranking Options:")
sequential_btn = gr.Button("Rank in Order (1,2,3...)")
reverse_btn = gr.Button("Reverse Order (n,n-1,...)")
clear_btn = gr.Button("Clear All Rankings")
# Document display with better UI for ranking
for i, doc in enumerate(samples[0]["candidates"]):
with gr.Row():
with gr.Column(scale=4):
doc_box = gr.Textbox(
value=doc,
label=f"Document {i+1}",
interactive=False
)
doc_containers.append(doc_box)
with gr.Column(scale=1):
# Use Dropdown instead of Radio for compatibility with Gradio 3.x
rank_input = gr.Dropdown(
choices=[str(j) for j in range(1, len(samples[0]["candidates"])+1)],
label=f"Rank",
value=""
)
ranking_inputs.append(rank_input)
# Add validation indicator
with gr.Column(scale=1, min_width=50):
validation = gr.HTML(value="")
validation_indicators.append(validation)
with gr.Row():
prev_btn = gr.Button("β Previous Query", size="sm")
submit_btn = gr.Button("Submit Rankings", size="lg", variant="primary")
next_btn = gr.Button("Next Query β", size="sm")
with gr.Row():
save_btn = gr.Button("πΎ Save All Results", variant="secondary")
results_info = gr.HTML(value=f"<p>Results will be saved to <code>{task_data['task_name']}_human_results.json</code></p>")
def validate_rankings(*rankings):
"""Validate rankings and update indicators."""
results = []
all_valid = True
for rank in rankings:
if rank is None or rank == "":
results.append("β οΈ")
all_valid = False
else:
results.append("β")
return results + [all_valid] # Return validation indicators and validity flag
def load_sample(sample_id):
"""Load a specific sample into the interface."""
sample = next((s for s in samples if s["id"] == sample_id), None)
if not sample:
return [query_text.value] + [d.value for d in doc_containers] + [""] * len(ranking_inputs) + [""] * len(validation_indicators) + [sample_id, progress_text.value, status_box.value]
# Update query
new_query = sample["query"]
# Update documents
new_docs = []
for i, doc in enumerate(sample["candidates"]):
if i < len(doc_containers):
new_docs.append(doc)
# Initialize rankings
new_rankings = [""] * len(ranking_inputs)
# Check if this sample has already been annotated
existing_annotation = next((a for a in results["annotations"] if a["sample_id"] == sample_id), None)
if existing_annotation:
# Restore previous rankings
for i, rank in enumerate(existing_annotation["rankings"]):
if i < len(new_rankings) and rank is not None:
new_rankings[i] = str(rank)
# Update progress
current_idx = samples.index(sample)
new_progress = f"Progress: {sum(completed_samples.values())}/{len(samples)}"
new_status = f"Viewing query {current_idx + 1} of {len(samples)}"
if completed_samples[sample_id]:
new_status += " (already completed)"
# Initialize validation indicators
validation_results = validate_rankings(*new_rankings)
validation_indicators_values = validation_results[:-1] # Remove validity flag
return [new_query] + new_docs + new_rankings + validation_indicators_values + [sample_id, new_progress, new_status]
def auto_save_and_navigate(direction, current_id, auto_save, *rankings):
"""Save rankings if auto-save is enabled, then navigate."""
# Extract rankings (remove validation indicators)
actual_rankings = rankings[:len(ranking_inputs)]
# If auto-save is enabled, try to save the current rankings
status_msg = ""
progress_msg = f"Progress: {sum(completed_samples.values())}/{len(samples)}"
if auto_save:
# Only save if all rankings are provided
validation_results = validate_rankings(*actual_rankings)
all_valid = validation_results[-1] # Last item is validity flag
if all_valid:
status_msg, progress_msg = save_ranking(actual_rankings, current_id)
# Navigate to the next/previous sample
if direction == "next":
new_id = next_sample(current_id)
else:
new_id = prev_sample(current_id)
# Return the new sample ID and status message
return new_id, status_msg, progress_msg
def next_sample(current_id):
"""Load the next sample."""
current_sample = next((s for s in samples if s["id"] == current_id), None)
if not current_sample:
return current_id
current_idx = samples.index(current_sample)
if current_idx < len(samples) - 1:
next_sample = samples[current_idx + 1]
return next_sample["id"]
return current_id
def prev_sample(current_id):
"""Load the previous sample."""
current_sample = next((s for s in samples if s["id"] == current_id), None)
if not current_sample:
return current_id
current_idx = samples.index(current_sample)
if current_idx > 0:
prev_sample = samples[current_idx - 1]
return prev_sample["id"]
return current_id
def save_results():
"""Save all collected results to a file."""
output_path = f"{task_data['task_name']}_human_results.json"
try:
with open(output_path, "w") as f:
json.dump(results, f, indent=2)
return f"β
Results saved to {output_path} ({len(results['annotations'])} annotations)"
except Exception as e:
return f"Error saving results: {str(e)}"
# Function to assign sequential ranks
def assign_sequential_ranks():
return [str(i+1) for i in range(len(samples[0]["candidates"]))]
# Function to assign reverse ranks
def assign_reverse_ranks():
n = len(samples[0]["candidates"])
return [str(n-i) for i in range(n)]
# Function to clear all rankings
def clear_rankings():
return [""] * len(samples[0]["candidates"])
# Define a function that collects all ranking values and validates them
def submit_rankings(*args):
# Get the last argument (sample_id) and the rankings
if len(args) < 1:
return "Error: No arguments provided", progress_text.value
# Verify we have enough rankings
if len(args) < len(ranking_inputs) + 1:
return "Error: Not enough ranking inputs provided", progress_text.value
sample_id = args[-1]
rankings = args[:len(ranking_inputs)]
# First validate the rankings
validation_results = validate_rankings(*rankings)
all_valid = validation_results[-1] # Last item is validity flag
validation_indicators_values = validation_results[:-1] # Remove validity flag
# Update validation indicators
for i, result in enumerate(validation_indicators_values):
if i < len(validation_indicators):
validation_indicators[i].update(value=result)
# If not all valid, return error message
if not all_valid:
return "β οΈ Please assign a rank to all documents before submitting", progress_text.value
# Save the validated rankings
status, progress = save_ranking(rankings, sample_id)
return status, progress
# Wire up events (Gradio 3.x syntax)
submit_btn.click(
fn=submit_rankings,
inputs=ranking_inputs + [current_sample_id],
outputs=[status_box, progress_text]
)
# Auto-save and navigate events
def handle_next(current_id, auto_save, *rankings):
# First, handle auto-save
new_id, status, progress = auto_save_and_navigate("next", current_id, auto_save, *rankings)
# Then, load the new sample
outputs = load_sample(new_id)
# Add the status and progress
outputs[-2] = progress if status else outputs[-2]
outputs[-1] = status if status else outputs[-1]
return outputs
def handle_prev(current_id, auto_save, *rankings):
# First, handle auto-save
new_id, status, progress = auto_save_and_navigate("prev", current_id, auto_save, *rankings)
# Then, load the new sample
outputs = load_sample(new_id)
# Add the status and progress
outputs[-2] = progress if status else outputs[-2]
outputs[-1] = status if status else outputs[-1]
return outputs
# Connect navigation with Gradio 3.x syntax
next_btn.click(
fn=handle_next,
inputs=[current_sample_id, auto_save_toggle] + ranking_inputs,
outputs=[query_text] + doc_containers + ranking_inputs + validation_indicators + [current_sample_id, progress_text, status_box]
)
prev_btn.click(
fn=handle_prev,
inputs=[current_sample_id, auto_save_toggle] + ranking_inputs,
outputs=[query_text] + doc_containers + ranking_inputs + validation_indicators + [current_sample_id, progress_text, status_box]
)
# Connect quick ranking buttons
sequential_btn.click(
fn=assign_sequential_ranks,
inputs=None,
outputs=ranking_inputs
)
reverse_btn.click(
fn=assign_reverse_ranks,
inputs=None,
outputs=ranking_inputs
)
clear_btn.click(
fn=clear_rankings,
inputs=None,
outputs=ranking_inputs
)
# Connect save button
save_btn.click(
fn=save_results,
inputs=None,
outputs=[status_box]
)
# Connect auto-save toggle
def update_auto_save(enabled):
return enabled
auto_save_toggle.change(
fn=update_auto_save,
inputs=[auto_save_toggle],
outputs=[auto_save_enabled]
)
return demo
# Main app with file upload capability and improved task management
def create_main_app():
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("# MTEB Human Evaluation Demo")
task_container = gr.HTML()
loaded_task_info = gr.JSON(label="Loaded Task Information", visible=False)
tabs = gr.Tabs()
with tabs:
with gr.TabItem("Demo"):
gr.Markdown("""
## MTEB Human Evaluation Interface
This interface allows you to evaluate the relevance of documents for reranking tasks.
""")
# Function to get the most recent task file
def get_latest_task_file():
# Check first in uploaded_tasks directory
os.makedirs("uploaded_tasks", exist_ok=True)
uploaded_tasks = [f for f in os.listdir("uploaded_tasks") if f.endswith(".json")]
if uploaded_tasks:
# Sort by modification time, newest first
uploaded_tasks.sort(key=lambda x: os.path.getmtime(os.path.join("uploaded_tasks", x)), reverse=True)
task_path = os.path.join("uploaded_tasks", uploaded_tasks[0])
# Verify this is a valid task file
try:
with open(task_path, "r") as f:
task_data = json.load(f)
if "task_name" in task_data and "samples" in task_data:
return task_path
except:
pass
# Look for task files in the current directory
current_dir_tasks = [f for f in os.listdir(".") if f.endswith("_human_eval.json")]
if current_dir_tasks:
# Sort by modification time, newest first
current_dir_tasks.sort(key=lambda x: os.path.getmtime(x), reverse=True)
return current_dir_tasks[0]
# Fall back to fixed example if available
if os.path.exists("AskUbuntuDupQuestions_human_eval.json"):
return "AskUbuntuDupQuestions_human_eval.json"
# No valid task file found
return None
# Load the task file
task_file = get_latest_task_file()
if task_file:
try:
with open(task_file, "r") as f:
task_data = json.load(f)
# Show which task is currently loaded
gr.Markdown(f"**Current Task: {task_data['task_name']}** ({len(task_data['samples'])} samples)")
# Display the interface
demo = create_reranking_interface(task_data)
task_container.update(value=f"<p>Task loaded: {task_file}</p>")
except Exception as e:
gr.Markdown(f"**Error loading task: {str(e)}**")
gr.Markdown("Please upload a valid task file in the 'Upload & Evaluate' tab.")
else:
gr.Markdown("**No task file found**")
gr.Markdown("Please upload a valid task file in the 'Upload & Evaluate' tab.")
with gr.TabItem("Upload & Evaluate"):
gr.Markdown("""
## Upload Your Own Task File
If you have a prepared task file, you can upload it here to create an evaluation interface.
""")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(label="Upload a task file (JSON)")
load_btn = gr.Button("Load Task")
message = gr.Textbox(label="Status", interactive=False)
# Add task list for previously uploaded tasks
gr.Markdown("### Previous Uploads")
# Function to list existing task files in the tasks directory
def list_task_files():
os.makedirs("uploaded_tasks", exist_ok=True)
tasks = [f for f in os.listdir("uploaded_tasks") if f.endswith(".json")]
if not tasks:
return "No task files uploaded yet."
return "\n".join([f"- {t}" for t in tasks])
task_list = gr.Markdown(list_task_files())
refresh_btn = gr.Button("Refresh List")
# Add results management section
gr.Markdown("### Results Management")
# Function to list existing result files
def list_result_files():
results = [f for f in os.listdir(".") if f.endswith("_human_results.json")]
if not results:
return "No result files available yet."
result_links = []
for r in results:
# Calculate completion stats
try:
with open(r, "r") as f:
result_data = json.load(f)
annotation_count = len(result_data.get("annotations", []))
task_name = result_data.get("task_name", "Unknown")
result_links.append(f"- {r} ({annotation_count} annotations for {task_name})")
except:
result_links.append(f"- {r}")
return "\n".join(result_links)
results_list = gr.Markdown(list_result_files())
download_results_btn = gr.Button("Download Results")
# Handle file upload and storage
def handle_upload(file):
if not file:
return "Please upload a task file", task_list.value, ""
try:
# Create directory if it doesn't exist
os.makedirs("uploaded_tasks", exist_ok=True)
# Read the uploaded file
with open(file.name, "r") as f:
task_data = json.load(f)
# Validate task format
if "task_name" not in task_data or "samples" not in task_data:
return "Invalid task file format. Must contain 'task_name' and 'samples' fields.", task_list.value, ""
# Save to a consistent location
task_filename = f"uploaded_tasks/{task_data['task_name']}_task.json"
with open(task_filename, "w") as f:
json.dump(task_data, f, indent=2)
return f"Task '{task_data['task_name']}' uploaded successfully with {len(task_data['samples'])} samples. Please refresh the app and use the Demo tab to evaluate it.", list_task_files(), f"""
<div style="padding: 20px; background-color: #f0f0f0; border-radius: 10px;">
<h3>Task uploaded successfully!</h3>
<p>Task Name: {task_data['task_name']}</p>
<p>Samples: {len(task_data['samples'])}</p>
<p>To evaluate this task:</p>
<ol>
<li>Refresh the app</li>
<li>The Demo tab will now use your uploaded task</li>
<li>Complete your evaluations</li>
<li>Results will be saved as {task_data['task_name']}_human_results.json</li>
</ol>
</div>
"""
except Exception as e:
return f"Error processing task file: {str(e)}", task_list.value, ""
# Function to prepare results for download
def prepare_results_for_download():
results = [f for f in os.listdir(".") if f.endswith("_human_results.json")]
if not results:
return None
# Create a zip file with all results
import zipfile
zip_path = "mteb_human_eval_results.zip"
with zipfile.ZipFile(zip_path, 'w') as zipf:
for r in results:
zipf.write(r)
return zip_path
# Connect events
load_btn.click(
fn=handle_upload,
inputs=[file_input],
outputs=[message, task_list, task_container]
)
refresh_btn.click(
fn=list_task_files,
inputs=None,
outputs=[task_list]
)
download_results_btn.click(
fn=prepare_results_for_download,
inputs=None,
outputs=[gr.File(label="Download Results")]
)
with gr.TabItem("Results Management"):
gr.Markdown("""
## Manage Evaluation Results
View, download, and analyze your evaluation results.
""")
# Function to load and display result stats
def get_result_stats():
results = [f for f in os.listdir(".") if f.endswith("_human_results.json")]
if not results:
return "No result files available yet."
stats = []
for r in results:
try:
with open(r, "r") as f:
result_data = json.load(f)
task_name = result_data.get("task_name", "Unknown")
annotations = result_data.get("annotations", [])
annotation_count = len(annotations)
# Calculate completion percentage
sample_ids = set(a.get("sample_id") for a in annotations)
# Try to get the total sample count from the corresponding task file
total_samples = 0
# Try uploaded_tasks directory first
task_file = f"uploaded_tasks/{task_name}_task.json"
if os.path.exists(task_file):
with open(task_file, "r") as f:
task_data = json.load(f)
total_samples = len(task_data.get("samples", []))
else:
# Try human_eval file in current directory
task_file = f"{task_name}_human_eval.json"
if os.path.exists(task_file):
with open(task_file, "r") as f:
task_data = json.load(f)
total_samples = len(task_data.get("samples", []))
completion = f"{len(sample_ids)}/{total_samples}" if total_samples else f"{len(sample_ids)} samples"
stats.append(f"### {task_name}\n- Annotations: {annotation_count}\n- Completion: {completion}\n- File: {r}")
except Exception as e:
stats.append(f"### {r}\n- Error loading results: {str(e)}")
return "\n\n".join(stats)
result_stats = gr.Markdown(get_result_stats())
refresh_results_btn = gr.Button("Refresh Results")
# Add download options
with gr.Row():
download_all_btn = gr.Button("Download All Results (ZIP)")
result_select = gr.Dropdown(choices=[f for f in os.listdir(".") if f.endswith("_human_results.json")], label="Select Result to Download")
download_selected_btn = gr.Button("Download Selected")
# Function to prepare all results for download as ZIP
def prepare_all_results():
import zipfile
zip_path = "mteb_human_eval_results.zip"
with zipfile.ZipFile(zip_path, 'w') as zipf:
for r in [f for f in os.listdir(".") if f.endswith("_human_results.json")]:
zipf.write(r)
return zip_path
# Function to return a single result file
def get_selected_result(filename):
if not filename:
return None
if os.path.exists(filename):
return filename
return None
# Update dropdown when refreshing results
def update_result_dropdown():
return gr.Dropdown.update(choices=[f for f in os.listdir(".") if f.endswith("_human_results.json")])
# Connect events
refresh_results_btn.click(
fn=get_result_stats,
inputs=None,
outputs=[result_stats]
)
refresh_results_btn.click(
fn=update_result_dropdown,
inputs=None,
outputs=[result_select]
)
download_all_btn.click(
fn=prepare_all_results,
inputs=None,
outputs=[gr.File(label="Download All Results")]
)
download_selected_btn.click(
fn=get_selected_result,
inputs=[result_select],
outputs=[gr.File(label="Download Selected Result")]
)
return app
# Create the app
demo = create_main_app()
if __name__ == "__main__":
demo.launch()
|