Spaces:
Sleeping
Sleeping
File size: 11,269 Bytes
90f0bd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import gradio as gr
import json
import os
from pathlib import Path
def create_reranking_interface(task_data):
"""Create a Gradio interface for reranking evaluation."""
samples = task_data["samples"]
results = {"task_name": task_data["task_name"], "task_type": "reranking", "annotations": []}
completed_samples = {s["id"]: False for s in samples}
def save_ranking(rankings, sample_id):
"""Save the current set of rankings."""
# Check if all documents have rankings
all_ranked = all(r is not None and r != "" for r in rankings)
if not all_ranked:
return "β οΈ Please assign a rank to all documents before submitting", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
# Convert rankings to integers
processed_rankings = [int(r) for r in rankings]
# Check for duplicate rankings
if len(set(processed_rankings)) != len(processed_rankings):
return "β οΈ Each document must have a unique rank. Please review your rankings.", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
# Store this annotation
existing_idx = next((i for i, a in enumerate(results["annotations"]) if a["sample_id"] == sample_id), None)
if existing_idx is not None:
results["annotations"][existing_idx] = {
"sample_id": sample_id,
"rankings": processed_rankings
}
else:
results["annotations"].append({
"sample_id": sample_id,
"rankings": processed_rankings
})
completed_samples[sample_id] = True
success_msg = f"β
Rankings for query '{sample_id}' successfully saved!"
progress = f"Progress: {sum(completed_samples.values())}/{len(samples)}"
# Auto-save results after each submission
output_path = f"{task_data['task_name']}_human_results.json"
with open(output_path, "w") as f:
json.dump(results, f, indent=2)
return success_msg, progress
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(f"# {task_data['task_name']} - Human Reranking Evaluation")
with gr.Accordion("Instructions", open=True):
gr.Markdown("""
## Task Instructions
{instructions}
### How to use this interface:
1. Read the query at the top
2. Review each document carefully
3. Assign a rank to each document (1 = most relevant, higher numbers = less relevant)
4. Each document must have a unique rank
5. Click "Submit Rankings" when you're done with the current query
6. Use "Previous" and "Next" to navigate between queries
7. Click "Save All Results" periodically to ensure your work is saved
""".format(instructions=task_data["instructions"]))
current_sample_id = gr.State(value=samples[0]["id"])
with gr.Row():
progress_text = gr.Textbox(label="Progress", value=f"Progress: 0/{len(samples)}", interactive=False)
status_box = gr.Textbox(label="Status", value="Ready to start evaluation", interactive=False)
with gr.Group():
gr.Markdown("## Query:")
query_text = gr.Textbox(value=samples[0]["query"], label="", interactive=False)
gr.Markdown("## Documents to Rank:")
# Create document displays and ranking dropdowns in synchronized pairs
doc_containers = []
ranking_dropdowns = []
with gr.Column():
for i, doc in enumerate(samples[0]["candidates"]):
with gr.Row():
doc_box = gr.Textbox(
value=doc,
label=f"Document {i+1}",
interactive=False
)
dropdown = gr.Dropdown(
choices=[str(j) for j in range(1, len(samples[0]["candidates"])+1)],
label=f"Rank",
value=""
)
doc_containers.append(doc_box)
ranking_dropdowns.append(dropdown)
with gr.Row():
prev_btn = gr.Button("β Previous Query", size="sm")
submit_btn = gr.Button("Submit Rankings", size="lg", variant="primary")
next_btn = gr.Button("Next Query β", size="sm")
save_btn = gr.Button("πΎ Save All Results", variant="secondary")
def load_sample(sample_id):
"""Load a specific sample into the interface."""
sample = next((s for s in samples if s["id"] == sample_id), None)
if not sample:
return [query_text.value] + [d.value for d in doc_containers] + [""] * len(ranking_dropdowns) + [current_sample_id.value, progress_text.value, status_box.value]
# Update query
new_query = sample["query"]
# Update documents
new_docs = []
for i, doc in enumerate(sample["candidates"]):
if i < len(doc_containers):
new_docs.append(doc)
# Initialize rankings
new_rankings = [""] * len(ranking_dropdowns)
# Check if this sample has already been annotated
existing_annotation = next((a for a in results["annotations"] if a["sample_id"] == sample_id), None)
if existing_annotation:
# Restore previous rankings
for i, rank in enumerate(existing_annotation["rankings"]):
if i < len(new_rankings) and rank is not None:
new_rankings[i] = str(rank)
# Update progress
current_idx = samples.index(sample)
new_progress = f"Progress: {sum(completed_samples.values())}/{len(samples)}"
new_status = f"Viewing query {current_idx + 1} of {len(samples)}"
if completed_samples[sample_id]:
new_status += " (already completed)"
return [new_query] + new_docs + new_rankings + [sample["id"], new_progress, new_status]
def next_sample(current_id):
"""Load the next sample."""
current_sample = next((s for s in samples if s["id"] == current_id), None)
if not current_sample:
return current_id
current_idx = samples.index(current_sample)
if current_idx < len(samples) - 1:
next_sample = samples[current_idx + 1]
return next_sample["id"]
return current_id
def prev_sample(current_id):
"""Load the previous sample."""
current_sample = next((s for s in samples if s["id"] == current_id), None)
if not current_sample:
return current_id
current_idx = samples.index(current_sample)
if current_idx > 0:
prev_sample = samples[current_idx - 1]
return prev_sample["id"]
return current_id
def save_results():
"""Save all collected results to a file."""
output_path = f"{task_data['task_name']}_human_results.json"
with open(output_path, "w") as f:
json.dump(results, f, indent=2)
return f"β
Results saved to {output_path} ({len(results['annotations'])} annotations)"
# Connect events
submit_btn.click(
save_ranking,
inputs=ranking_dropdowns + [current_sample_id],
outputs=[status_box, progress_text]
)
next_btn.click(
next_sample,
inputs=[current_sample_id],
outputs=[current_sample_id]
).then(
load_sample,
inputs=[current_sample_id],
outputs=[query_text] + doc_containers + ranking_dropdowns + [current_sample_id, progress_text, status_box]
)
prev_btn.click(
prev_sample,
inputs=[current_sample_id],
outputs=[current_sample_id]
).then(
load_sample,
inputs=[current_sample_id],
outputs=[query_text] + doc_containers + ranking_dropdowns + [current_sample_id, progress_text, status_box]
)
save_btn.click(save_results, outputs=[status_box])
return demo
# Main app with file upload capability
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# MTEB Human Evaluation Demo")
with gr.Tabs():
with gr.TabItem("Demo"):
gr.Markdown("""
## Try the MTEB Human Evaluation Interface
This is a demonstration of the human evaluation interface for MTEB reranking tasks.
The example below uses the AskUbuntuDupQuestions dataset.
""")
# Load the example task file
with open("AskUbuntuDupQuestions_human_eval.json", "r") as f:
example_data = json.load(f)
# Display a demo with the example data
reranking_demo = create_reranking_interface(example_data)
with gr.TabItem("Upload & Evaluate"):
gr.Markdown("""
## Upload Your Own Task File
If you have a prepared task file, you can upload it here to try out the evaluation interface.
""")
file_input = gr.File(label="Upload a task file (JSON)")
load_btn = gr.Button("Load Task")
message = gr.Textbox(label="Status")
task_container = gr.HTML()
def load_custom_task(file):
if not file:
return "Please upload a task file"
try:
with open(file.name, "r") as f:
task_data = json.load(f)
task_interface = create_reranking_interface(task_data)
# This is a placeholder - in Gradio you can't dynamically create interfaces this way
# You would need a different approach for a real implementation
return f"Task '{task_data['task_name']}' loaded with {len(task_data['samples'])} samples"
except Exception as e:
return f"Error loading task file: {str(e)}"
load_btn.click(load_custom_task, inputs=[file_input], outputs=[message])
if __name__ == "__main__":
demo.launch()
|