Spaces:
Running
Running
Update app.py
Browse filesCleaning up responsiveness for mobile
app.py
CHANGED
@@ -34,7 +34,7 @@ def get_formatter(format_str):
|
|
34 |
return format_str
|
35 |
|
36 |
|
37 |
-
class
|
38 |
# --- Input Parameters ---
|
39 |
kg_processed_per_hour = param.Number(
|
40 |
default=150.0,
|
@@ -135,10 +135,9 @@ class CannabinoidEstimator(param.Parameterized):
|
|
135 |
shifts_per_week = param.Number(
|
136 |
default=21.0, bounds=(1, 28), step=1.0, label="Shifts per week"
|
137 |
)
|
138 |
-
batch_frequency = param.String(
|
139 |
-
default = "Day", label="New batch frequency"
|
140 |
-
)
|
141 |
|
|
|
142 |
kg_processed_per_shift = 0.0
|
143 |
labour_cost_per_shift = 0.0
|
144 |
variable_cost_per_shift = 0.0
|
@@ -168,42 +167,248 @@ class CannabinoidEstimator(param.Parameterized):
|
|
168 |
net_rev_per_kg_output = 0.0
|
169 |
operating_profit_pct = 0.0
|
170 |
resin_spread_pct = 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
profit_data_df = param.DataFrame(pd.DataFrame())
|
174 |
processing_data_df = param.DataFrame(pd.DataFrame())
|
175 |
|
176 |
def __init__(self, **params):
|
177 |
super().__init__(**params)
|
178 |
self._create_sliders()
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
182 |
disabled=True,
|
183 |
layout="fit_data",
|
184 |
sizing_mode="fixed",
|
185 |
align="center",
|
186 |
-
show_index=False,
|
187 |
text_align={
|
188 |
" ": "right",
|
189 |
"$/kg Biomass": "center",
|
190 |
"$/kg Output": "center",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
"Per Shift": "center",
|
192 |
"Per Day": "center",
|
193 |
"Per Week": "center",
|
194 |
},
|
195 |
)
|
|
|
196 |
self.profit_table = pn.widgets.Tabulator(
|
197 |
self.profit_data_df,
|
198 |
disabled=True,
|
199 |
layout="fit_data_table",
|
200 |
sizing_mode="fixed",
|
201 |
align="center",
|
202 |
-
show_index=False,
|
203 |
-
text_align={
|
204 |
-
"Metric": "right",
|
205 |
-
"Value": "center",
|
206 |
-
},
|
207 |
)
|
208 |
self.processing_table = pn.widgets.Tabulator(
|
209 |
self.processing_data_df,
|
@@ -212,46 +417,39 @@ class CannabinoidEstimator(param.Parameterized):
|
|
212 |
layout="fit_data_table",
|
213 |
sizing_mode="fixed",
|
214 |
align="center",
|
215 |
-
show_index=False,
|
216 |
-
text_align={
|
217 |
-
"Metric (Per Shift)": "right",
|
218 |
-
"Value": "center",
|
219 |
-
},
|
220 |
)
|
221 |
self.profit_weekly = pn.indicators.Number(
|
222 |
name="Weekly Profit",
|
223 |
-
value=
|
224 |
-
format=
|
225 |
default_color="green",
|
226 |
align="center",
|
227 |
)
|
228 |
self.profit_pct = pn.indicators.Number(
|
229 |
name="Operating Profit",
|
230 |
-
value=
|
231 |
-
format=
|
232 |
default_color="green",
|
233 |
align="center",
|
234 |
)
|
|
|
235 |
self._update_calculations()
|
236 |
|
237 |
def _create_sliders(self):
|
238 |
self.kg_processed_per_hour_slider = pn.widgets.EditableFloatSlider.from_param(
|
239 |
self.param.kg_processed_per_hour,
|
240 |
name=self.param.kg_processed_per_hour.label,
|
241 |
-
fixed_start=self.param.kg_processed_per_hour.bounds[0],
|
242 |
-
fixed_end=self.param.kg_processed_per_hour.bounds[1],
|
243 |
design=slider_design,
|
244 |
styles=slider_style,
|
245 |
stylesheets=slider_stylesheet,
|
246 |
-
# format="0",
|
247 |
format=PrintfTickFormatter(format="%i kg"),
|
248 |
)
|
249 |
self.finished_product_yield_pct_slider = (
|
250 |
pn.widgets.EditableFloatSlider.from_param(
|
251 |
self.param.finished_product_yield_pct,
|
252 |
name=self.param.finished_product_yield_pct.label,
|
253 |
-
fixed_start=self.param.finished_product_yield_pct.bounds[0],
|
254 |
-
fixed_end=self.param.finished_product_yield_pct.bounds[1],
|
255 |
design=slider_design,
|
256 |
styles=slider_style,
|
257 |
stylesheets=slider_stylesheet,
|
@@ -261,19 +459,14 @@ class CannabinoidEstimator(param.Parameterized):
|
|
261 |
self.kwh_rate_slider = pn.widgets.EditableFloatSlider.from_param(
|
262 |
self.param.kwh_rate,
|
263 |
name=self.param.kwh_rate.label,
|
264 |
-
fixed_start=self.param.kwh_rate.bounds[0],
|
265 |
-
fixed_end=self.param.kwh_rate.bounds[1],
|
266 |
design=slider_design,
|
267 |
styles=slider_style,
|
268 |
stylesheets=slider_stylesheet,
|
269 |
format="0.00",
|
270 |
-
# format=PrintfTickFormatter(format='%.2f per kWh'),
|
271 |
)
|
272 |
self.water_cost_per_1000l_slider = pn.widgets.EditableFloatSlider.from_param(
|
273 |
self.param.water_cost_per_1000l,
|
274 |
name=self.param.water_cost_per_1000l.label,
|
275 |
-
fixed_start=self.param.water_cost_per_1000l.bounds[0],
|
276 |
-
fixed_end=self.param.water_cost_per_1000l.bounds[1],
|
277 |
design=slider_design,
|
278 |
styles=slider_style,
|
279 |
stylesheets=slider_stylesheet,
|
@@ -283,8 +476,6 @@ class CannabinoidEstimator(param.Parameterized):
|
|
283 |
pn.widgets.EditableFloatSlider.from_param(
|
284 |
self.param.consumables_per_kg_bio_rate,
|
285 |
name=self.param.consumables_per_kg_bio_rate.label,
|
286 |
-
fixed_start=self.param.consumables_per_kg_bio_rate.bounds[0],
|
287 |
-
fixed_end=self.param.consumables_per_kg_bio_rate.bounds[1],
|
288 |
design=slider_design,
|
289 |
styles=slider_style,
|
290 |
stylesheets=slider_stylesheet,
|
@@ -294,8 +485,6 @@ class CannabinoidEstimator(param.Parameterized):
|
|
294 |
self.kwh_per_kg_bio_slider = pn.widgets.EditableFloatSlider.from_param(
|
295 |
self.param.kwh_per_kg_bio,
|
296 |
name=self.param.kwh_per_kg_bio.label,
|
297 |
-
fixed_start=self.param.kwh_per_kg_bio.bounds[0],
|
298 |
-
fixed_end=self.param.kwh_per_kg_bio.bounds[1],
|
299 |
design=slider_design,
|
300 |
styles=slider_style,
|
301 |
stylesheets=slider_stylesheet,
|
@@ -305,8 +494,6 @@ class CannabinoidEstimator(param.Parameterized):
|
|
305 |
pn.widgets.EditableFloatSlider.from_param(
|
306 |
self.param.water_liters_consumed_per_kg_bio,
|
307 |
name=self.param.water_liters_consumed_per_kg_bio.label,
|
308 |
-
fixed_start=self.param.water_liters_consumed_per_kg_bio.bounds[0],
|
309 |
-
fixed_end=self.param.water_liters_consumed_per_kg_bio.bounds[1],
|
310 |
design=slider_design,
|
311 |
styles=slider_style,
|
312 |
stylesheets=slider_stylesheet,
|
@@ -317,8 +504,6 @@ class CannabinoidEstimator(param.Parameterized):
|
|
317 |
pn.widgets.EditableFloatSlider.from_param(
|
318 |
self.param.consumables_per_kg_output,
|
319 |
name=self.param.consumables_per_kg_output.label,
|
320 |
-
fixed_start=self.param.consumables_per_kg_output.bounds[0],
|
321 |
-
fixed_end=self.param.consumables_per_kg_output.bounds[1],
|
322 |
design=slider_design,
|
323 |
styles=slider_style,
|
324 |
stylesheets=slider_stylesheet,
|
@@ -328,8 +513,6 @@ class CannabinoidEstimator(param.Parameterized):
|
|
328 |
self.bio_cbx_pct_slider = pn.widgets.EditableFloatSlider.from_param(
|
329 |
self.param.bio_cbx_pct,
|
330 |
name=self.param.bio_cbx_pct.label,
|
331 |
-
fixed_start=self.param.bio_cbx_pct.bounds[0],
|
332 |
-
fixed_end=self.param.bio_cbx_pct.bounds[1],
|
333 |
design=slider_design,
|
334 |
styles=slider_style,
|
335 |
stylesheets=slider_stylesheet,
|
@@ -338,8 +521,6 @@ class CannabinoidEstimator(param.Parameterized):
|
|
338 |
self.bio_cost_slider = pn.widgets.EditableFloatSlider.from_param(
|
339 |
self.param.bio_cost,
|
340 |
name=self.param.bio_cost.label,
|
341 |
-
fixed_start=self.param.bio_cost.bounds[0],
|
342 |
-
fixed_end=self.param.bio_cost.bounds[1],
|
343 |
design=slider_design,
|
344 |
styles=slider_style,
|
345 |
stylesheets=slider_stylesheet,
|
@@ -348,8 +529,6 @@ class CannabinoidEstimator(param.Parameterized):
|
|
348 |
self.wholesale_cbx_price_slider = pn.widgets.EditableFloatSlider.from_param(
|
349 |
self.param.wholesale_cbx_price,
|
350 |
name=self.param.wholesale_cbx_price.label,
|
351 |
-
fixed_start=self.param.wholesale_cbx_price.bounds[0],
|
352 |
-
fixed_end=self.param.wholesale_cbx_price.bounds[1],
|
353 |
design=slider_design,
|
354 |
styles=slider_style,
|
355 |
stylesheets=slider_stylesheet,
|
@@ -358,8 +537,6 @@ class CannabinoidEstimator(param.Parameterized):
|
|
358 |
self.wholesale_cbx_pct_slider = pn.widgets.EditableFloatSlider.from_param(
|
359 |
self.param.wholesale_cbx_pct,
|
360 |
name=self.param.wholesale_cbx_pct.label,
|
361 |
-
fixed_start=self.param.wholesale_cbx_pct.bounds[0],
|
362 |
-
fixed_end=self.param.wholesale_cbx_pct.bounds[1],
|
363 |
design=slider_design,
|
364 |
styles=slider_style,
|
365 |
stylesheets=slider_stylesheet,
|
@@ -368,8 +545,6 @@ class CannabinoidEstimator(param.Parameterized):
|
|
368 |
self.batch_test_cost_slider = pn.widgets.EditableFloatSlider.from_param(
|
369 |
self.param.batch_test_cost,
|
370 |
name=self.param.batch_test_cost.label,
|
371 |
-
fixed_start=self.param.batch_test_cost.bounds[0],
|
372 |
-
fixed_end=self.param.batch_test_cost.bounds[1],
|
373 |
design=slider_design,
|
374 |
styles=slider_style,
|
375 |
stylesheets=slider_stylesheet,
|
@@ -378,8 +553,6 @@ class CannabinoidEstimator(param.Parameterized):
|
|
378 |
self.fixed_overhead_per_week_slider = pn.widgets.EditableFloatSlider.from_param(
|
379 |
self.param.fixed_overhead_per_week,
|
380 |
name=self.param.fixed_overhead_per_week.label,
|
381 |
-
fixed_start=self.param.fixed_overhead_per_week.bounds[0],
|
382 |
-
fixed_end=self.param.fixed_overhead_per_week.bounds[1],
|
383 |
design=slider_design,
|
384 |
styles=slider_style,
|
385 |
stylesheets=slider_stylesheet,
|
@@ -388,8 +561,6 @@ class CannabinoidEstimator(param.Parameterized):
|
|
388 |
self.workers_per_shift_slider = pn.widgets.EditableFloatSlider.from_param(
|
389 |
self.param.workers_per_shift,
|
390 |
name=self.param.workers_per_shift.label,
|
391 |
-
fixed_start=self.param.workers_per_shift.bounds[0],
|
392 |
-
fixed_end=self.param.workers_per_shift.bounds[1],
|
393 |
design=slider_design,
|
394 |
styles=slider_style,
|
395 |
stylesheets=slider_stylesheet,
|
@@ -398,8 +569,6 @@ class CannabinoidEstimator(param.Parameterized):
|
|
398 |
self.worker_hourly_rate_slider = pn.widgets.EditableFloatSlider.from_param(
|
399 |
self.param.worker_hourly_rate,
|
400 |
name=self.param.worker_hourly_rate.label,
|
401 |
-
fixed_start=self.param.worker_hourly_rate.bounds[0],
|
402 |
-
fixed_end=self.param.worker_hourly_rate.bounds[1],
|
403 |
design=slider_design,
|
404 |
styles=slider_style,
|
405 |
stylesheets=slider_stylesheet,
|
@@ -408,8 +577,6 @@ class CannabinoidEstimator(param.Parameterized):
|
|
408 |
self.managers_per_shift_slider = pn.widgets.EditableFloatSlider.from_param(
|
409 |
self.param.managers_per_shift,
|
410 |
name=self.param.managers_per_shift.label,
|
411 |
-
fixed_start=self.param.managers_per_shift.bounds[0],
|
412 |
-
fixed_end=self.param.managers_per_shift.bounds[1],
|
413 |
design=slider_design,
|
414 |
styles=slider_style,
|
415 |
stylesheets=slider_stylesheet,
|
@@ -418,45 +585,32 @@ class CannabinoidEstimator(param.Parameterized):
|
|
418 |
self.manager_hourly_rate_slider = pn.widgets.EditableFloatSlider.from_param(
|
419 |
self.param.manager_hourly_rate,
|
420 |
name=self.param.manager_hourly_rate.label,
|
421 |
-
fixed_start=self.param.worker_hourly_rate.default, # Keeping original logic as per file
|
422 |
-
fixed_end=self.param.manager_hourly_rate.bounds[1],
|
423 |
design=slider_design,
|
424 |
styles=slider_style,
|
425 |
stylesheets=slider_stylesheet,
|
426 |
format="0.00",
|
427 |
)
|
428 |
-
|
429 |
self.labour_hours_per_shift_slider = pn.widgets.EditableFloatSlider.from_param(
|
430 |
self.param.labour_hours_per_shift,
|
431 |
name=self.param.labour_hours_per_shift.label,
|
432 |
-
fixed_start=self.param.labour_hours_per_shift.bounds[
|
433 |
-
0
|
434 |
-
], # Changed in previous request
|
435 |
-
fixed_end=self.param.labour_hours_per_shift.bounds[1],
|
436 |
design=slider_design,
|
437 |
styles=slider_style,
|
438 |
stylesheets=slider_stylesheet,
|
439 |
format="0.00",
|
440 |
)
|
441 |
-
|
442 |
self.processing_hours_per_shift_slider = (
|
443 |
pn.widgets.EditableFloatSlider.from_param(
|
444 |
self.param.processing_hours_per_shift,
|
445 |
name=self.param.processing_hours_per_shift.label,
|
446 |
-
fixed_start=self.param.processing_hours_per_shift.bounds[0],
|
447 |
-
fixed_end=self.labour_hours_per_shift, # Changed in previous request
|
448 |
design=slider_design,
|
449 |
styles=slider_style,
|
450 |
stylesheets=slider_stylesheet,
|
451 |
format="0.00",
|
452 |
)
|
453 |
)
|
454 |
-
|
455 |
self.shifts_per_day_slider = pn.widgets.EditableFloatSlider.from_param(
|
456 |
self.param.shifts_per_day,
|
457 |
name=self.param.shifts_per_day.label,
|
458 |
-
fixed_start=self.param.shifts_per_day.bounds[0],
|
459 |
-
fixed_end=self.param.shifts_per_day.bounds[1],
|
460 |
design=slider_design,
|
461 |
styles=slider_style,
|
462 |
stylesheets=slider_stylesheet,
|
@@ -465,14 +619,11 @@ class CannabinoidEstimator(param.Parameterized):
|
|
465 |
self.shifts_per_week_slider = pn.widgets.EditableFloatSlider.from_param(
|
466 |
self.param.shifts_per_week,
|
467 |
name=self.param.shifts_per_week.label,
|
468 |
-
fixed_start=self.param.shifts_per_week.bounds[0],
|
469 |
-
fixed_end=self.param.shifts_per_week.bounds[1],
|
470 |
design=slider_design,
|
471 |
styles=slider_style,
|
472 |
stylesheets=slider_stylesheet,
|
473 |
format="0",
|
474 |
)
|
475 |
-
|
476 |
self.batch_frequency_radio = pn.widgets.RadioButtonGroup.from_param(
|
477 |
self.param.batch_frequency,
|
478 |
name=self.param.batch_frequency.label,
|
@@ -480,209 +631,33 @@ class CannabinoidEstimator(param.Parameterized):
|
|
480 |
button_type="primary",
|
481 |
)
|
482 |
|
483 |
-
@param.depends(
|
484 |
-
"kg_processed_per_hour",
|
485 |
-
"finished_product_yield_pct",
|
486 |
-
"kwh_rate",
|
487 |
-
"water_cost_per_1000l",
|
488 |
-
"consumables_per_kg_bio_rate",
|
489 |
-
"kwh_per_kg_bio",
|
490 |
-
"water_liters_consumed_per_kg_bio",
|
491 |
-
"consumables_per_kg_output",
|
492 |
-
"bio_cbx_pct",
|
493 |
-
"bio_cost",
|
494 |
-
"wholesale_cbx_price",
|
495 |
-
"wholesale_cbx_pct",
|
496 |
-
"batch_test_cost",
|
497 |
-
"batch_frequency",
|
498 |
-
"fixed_overhead_per_week",
|
499 |
-
"workers_per_shift",
|
500 |
-
"worker_hourly_rate",
|
501 |
-
"managers_per_shift",
|
502 |
-
"manager_hourly_rate",
|
503 |
-
"labour_hours_per_shift",
|
504 |
-
"processing_hours_per_shift",
|
505 |
-
"shifts_per_day",
|
506 |
-
"shifts_per_week",
|
507 |
-
watch=True,
|
508 |
-
)
|
509 |
-
def _update_calculations(self, *events):
|
510 |
-
self.kg_processed_per_shift = (
|
511 |
-
self.processing_hours_per_shift * self.kg_processed_per_hour
|
512 |
-
)
|
513 |
-
if self.shifts_per_week == 0:
|
514 |
-
self.shifts_per_week = 1
|
515 |
-
|
516 |
-
self._calc_saleable_kg()
|
517 |
-
self._calc_biomass_cost()
|
518 |
-
self._calc_cogs()
|
519 |
-
self._calc_gross_revenue()
|
520 |
-
self._calc_net_revenue()
|
521 |
-
|
522 |
-
self.operating_profit_pct = (
|
523 |
-
(self.net_rev_per_kg_bio / self.gross_rev_per_kg_bio)
|
524 |
-
if self.gross_rev_per_kg_bio
|
525 |
-
else 0.0
|
526 |
-
)
|
527 |
-
self.resin_spread_pct = (
|
528 |
-
((self.gross_rev_per_kg_bio - self.bio_cost) / self.bio_cost)
|
529 |
-
if self.bio_cost
|
530 |
-
else 0.0
|
531 |
-
)
|
532 |
-
|
533 |
-
self._update_tables_data()
|
534 |
-
|
535 |
@param.depends("labour_hours_per_shift", watch=True)
|
536 |
def _update_processing_hours_slider_constraints(self):
|
537 |
new_max_processing_hours = self.labour_hours_per_shift
|
538 |
-
|
539 |
-
# Get the current lower bound of the processing_hours_per_shift parameter
|
540 |
current_min_processing_hours = self.param.processing_hours_per_shift.bounds[0]
|
541 |
-
|
542 |
-
# Update the bounds of the underlying param.Number object for processing_hours_per_shift
|
543 |
-
# This allows the parameter to accept values up to the new maximum
|
544 |
self.param.processing_hours_per_shift.bounds = (
|
545 |
current_min_processing_hours,
|
546 |
new_max_processing_hours,
|
547 |
)
|
548 |
-
|
549 |
-
# Ensure the slider widget has been created before trying to access it
|
550 |
if hasattr(self, "processing_hours_per_shift_slider"):
|
551 |
-
# Update the 'end' property of the slider widget
|
552 |
self.processing_hours_per_shift_slider.end = new_max_processing_hours
|
553 |
-
|
554 |
-
# If the current value of processing_hours_per_shift is now greater than
|
555 |
-
# the new maximum, adjust it to be the new maximum.
|
556 |
if self.processing_hours_per_shift > new_max_processing_hours:
|
557 |
self.processing_hours_per_shift = new_max_processing_hours
|
558 |
|
559 |
-
def
|
560 |
-
|
561 |
-
manager_cost = self.managers_per_shift * self.manager_hourly_rate
|
562 |
-
self.labour_cost_per_shift = (
|
563 |
-
worker_cost + manager_cost
|
564 |
-
) * self.labour_hours_per_shift
|
565 |
-
|
566 |
-
power_cost_per_kg = self.kwh_rate * self.kwh_per_kg_bio
|
567 |
-
water_cost_per_kg = (
|
568 |
-
self.water_cost_per_1000l / 1000.0
|
569 |
-
) * self.water_liters_consumed_per_kg_bio
|
570 |
-
total_variable_consumable_cost_per_kg = (
|
571 |
-
self.consumables_per_kg_bio_rate + power_cost_per_kg + water_cost_per_kg
|
572 |
-
)
|
573 |
-
self.variable_cost_per_shift = (
|
574 |
-
total_variable_consumable_cost_per_kg * self.kg_processed_per_shift
|
575 |
-
)
|
576 |
-
|
577 |
-
self.overhead_cost_per_shift = (
|
578 |
-
self.fixed_overhead_per_week / self.shifts_per_week
|
579 |
-
if self.shifts_per_week > 0
|
580 |
-
else 0.0
|
581 |
-
)
|
582 |
-
|
583 |
-
# Calculate batch_test_cost_per_shift based on batch_frequency
|
584 |
-
self.batch_test_cost_per_shift = 0.0
|
585 |
-
if self.batch_frequency == "Shift":
|
586 |
-
self.batch_test_cost_per_shift = self.batch_test_cost
|
587 |
-
elif self.batch_frequency == "Day":
|
588 |
-
# Ensure self.shifts_per_day is defined and positive
|
589 |
-
if hasattr(self, 'shifts_per_day') and self.shifts_per_day > 0:
|
590 |
-
self.batch_test_cost_per_shift = self.batch_test_cost / self.shifts_per_day
|
591 |
-
else:
|
592 |
-
# If no shifts per day, or attribute not defined, cost per shift is 0
|
593 |
-
# Or, this could be an error condition if shifts_per_day is expected
|
594 |
-
self.batch_test_cost_per_shift = 0.0
|
595 |
-
elif self.batch_frequency == "Week":
|
596 |
-
# self.shifts_per_week is used above, so it should be available
|
597 |
-
if self.shifts_per_week > 0:
|
598 |
-
self.batch_test_cost_per_shift = self.batch_test_cost / self.shifts_per_week
|
599 |
-
else:
|
600 |
-
# If no shifts per week, cost per shift is 0
|
601 |
-
self.batch_test_cost_per_shift = 0.0
|
602 |
-
# else: # Optional: handle invalid self.batch_frequency value
|
603 |
-
# For example, raise ValueError or log a warning
|
604 |
-
# print(f"Warning: Unknown batch_frequency: {self.batch_frequency}")
|
605 |
-
|
606 |
-
shift_cogs_before_output_specific = (
|
607 |
-
self.labour_cost_per_shift
|
608 |
-
+ self.variable_cost_per_shift
|
609 |
-
+ self.overhead_cost_per_shift
|
610 |
-
+ self.batch_test_cost_per_shift # Added batch test cost
|
611 |
-
)
|
612 |
-
shift_output_specific_cogs = (
|
613 |
-
self.consumables_per_kg_output * self.saleable_kg_per_shift
|
614 |
-
)
|
615 |
-
|
616 |
-
self.internal_cogs_per_shift = (
|
617 |
-
shift_cogs_before_output_specific + shift_output_specific_cogs
|
618 |
-
)
|
619 |
-
self.internal_cogs_per_kg_bio = (
|
620 |
-
self.internal_cogs_per_shift / self.kg_processed_per_shift
|
621 |
-
if self.kg_processed_per_shift > 0
|
622 |
-
else 0.0
|
623 |
-
)
|
624 |
-
self.internal_cogs_per_day = self.internal_cogs_per_shift * self.shifts_per_day
|
625 |
-
self.internal_cogs_per_week = (
|
626 |
-
self.internal_cogs_per_shift * self.shifts_per_week
|
627 |
-
)
|
628 |
-
self.internal_cogs_per_kg_output = (
|
629 |
-
(self.internal_cogs_per_kg_bio * self.biomass_kg_per_saleable_kg)
|
630 |
-
if self.biomass_kg_per_saleable_kg != 0
|
631 |
-
else 0.0
|
632 |
-
)
|
633 |
-
|
634 |
-
def _calc_gross_revenue(self):
|
635 |
-
self.gross_rev_per_kg_bio = (
|
636 |
-
self.saleable_kg_per_kg_bio * self.wholesale_cbx_price
|
637 |
-
)
|
638 |
-
self.gross_rev_per_shift = (
|
639 |
-
self.gross_rev_per_kg_bio * self.kg_processed_per_shift
|
640 |
-
)
|
641 |
-
self.gross_rev_per_day = self.gross_rev_per_shift * self.shifts_per_day
|
642 |
-
self.gross_rev_per_week = self.gross_rev_per_shift * self.shifts_per_week
|
643 |
-
|
644 |
-
def _calc_net_revenue(self):
|
645 |
-
self.net_rev_per_kg_bio = (
|
646 |
-
self.gross_rev_per_kg_bio - self.internal_cogs_per_kg_bio - self.bio_cost
|
647 |
-
)
|
648 |
-
self.net_rev_per_shift = self.net_rev_per_kg_bio * self.kg_processed_per_shift
|
649 |
-
self.net_rev_per_day = self.net_rev_per_shift * self.shifts_per_day
|
650 |
-
self.net_rev_per_week = self.net_rev_per_shift * self.shifts_per_week
|
651 |
-
self.net_rev_per_kg_output = (
|
652 |
-
(self.biomass_kg_per_saleable_kg * self.net_rev_per_kg_bio)
|
653 |
-
if self.biomass_kg_per_saleable_kg != 0
|
654 |
-
else 0.0
|
655 |
-
)
|
656 |
-
|
657 |
-
def _calc_biomass_cost(self):
|
658 |
-
self.biomass_cost_per_shift = self.kg_processed_per_shift * self.bio_cost
|
659 |
-
self.biomass_cost_per_day = self.biomass_cost_per_shift * self.shifts_per_day
|
660 |
-
self.biomass_cost_per_week = self.biomass_cost_per_shift * self.shifts_per_week
|
661 |
-
|
662 |
-
def _calc_saleable_kg(self):
|
663 |
-
if self.wholesale_cbx_pct == 0:
|
664 |
-
self.saleable_kg_per_kg_bio = 0.0
|
665 |
-
else:
|
666 |
-
self.saleable_kg_per_kg_bio = (
|
667 |
-
(self.bio_cbx_pct / 100.0)
|
668 |
-
* (self.finished_product_yield_pct / 100.0)
|
669 |
-
/ (self.wholesale_cbx_pct / 100.0)
|
670 |
-
)
|
671 |
-
self.saleable_kg_per_shift = (
|
672 |
-
self.saleable_kg_per_kg_bio * self.kg_processed_per_shift
|
673 |
-
)
|
674 |
-
self.saleable_kg_per_day = self.saleable_kg_per_shift * self.shifts_per_day
|
675 |
-
self.saleable_kg_per_week = self.saleable_kg_per_shift * self.shifts_per_week
|
676 |
-
self.biomass_kg_per_saleable_kg = (
|
677 |
-
1 / self.saleable_kg_per_kg_bio if self.saleable_kg_per_kg_bio > 0 else 0.0
|
678 |
-
)
|
679 |
-
self.biomass_cost_per_kg_output = (
|
680 |
-
self.biomass_kg_per_saleable_kg * self.bio_cost
|
681 |
-
)
|
682 |
|
683 |
def _update_tables_data(self):
|
684 |
-
|
685 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
686 |
"$/kg Biomass": [
|
687 |
self.bio_cost,
|
688 |
self.internal_cogs_per_kg_bio,
|
@@ -695,6 +670,14 @@ class CannabinoidEstimator(param.Parameterized):
|
|
695 |
self.wholesale_cbx_price,
|
696 |
self.net_rev_per_kg_output,
|
697 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
698 |
"Per Shift": [
|
699 |
self.biomass_cost_per_shift,
|
700 |
self.internal_cogs_per_shift,
|
@@ -714,9 +697,9 @@ class CannabinoidEstimator(param.Parameterized):
|
|
714 |
self.net_rev_per_week,
|
715 |
],
|
716 |
}
|
717 |
-
self.
|
718 |
-
if hasattr(self, "
|
719 |
-
self.
|
720 |
|
721 |
profit_data_dict = {
|
722 |
"Metric": ["Operating Profit", "Resin Spread"],
|
@@ -747,41 +730,32 @@ class CannabinoidEstimator(param.Parameterized):
|
|
747 |
self.processing_data_df = pd.DataFrame(processing_data_dict)
|
748 |
if hasattr(self, "processing_table"):
|
749 |
self.processing_table.value = self.processing_data_df
|
750 |
-
|
751 |
if hasattr(self, "profit_weekly"):
|
752 |
self.profit_weekly.value = self.net_rev_per_week
|
753 |
self.profit_weekly.format = f"${self.net_rev_per_week / 1000:.0f} k"
|
754 |
-
|
755 |
if hasattr(self, "profit_pct"):
|
756 |
self.profit_pct.value = self.operating_profit_pct
|
757 |
-
self.profit_pct.format=f"{self.operating_profit_pct * 100.0:.2f}%"
|
758 |
-
|
759 |
-
def _get_money_formatters(self):
|
760 |
-
return {
|
761 |
-
"$/kg Biomass": get_formatter("$%.02f"),
|
762 |
-
"$/kg Output": get_formatter("$%.02f"),
|
763 |
-
"Per Shift": get_formatter("$%.02f"),
|
764 |
-
"Per Day": get_formatter("$%.02f"),
|
765 |
-
"Per Week": get_formatter("$%.02f"),
|
766 |
-
}
|
767 |
|
768 |
def view(self):
|
769 |
input_col_max_width = 400
|
770 |
-
|
771 |
"### Extraction",
|
772 |
self.kg_processed_per_hour_slider,
|
773 |
self.finished_product_yield_pct_slider,
|
774 |
sizing_mode="stretch_width",
|
775 |
max_width=input_col_max_width,
|
776 |
)
|
777 |
-
|
778 |
pn.pane.Markdown("### Biomass parameters", margin=0),
|
779 |
self.bio_cbx_pct_slider,
|
780 |
self.bio_cost_slider,
|
781 |
sizing_mode="stretch_width",
|
782 |
max_width=input_col_max_width,
|
783 |
)
|
784 |
-
|
785 |
pn.pane.Markdown("### Consumable rates", margin=0),
|
786 |
self.kwh_rate_slider,
|
787 |
self.water_cost_per_1000l_slider,
|
@@ -789,22 +763,22 @@ class CannabinoidEstimator(param.Parameterized):
|
|
789 |
sizing_mode="stretch_width",
|
790 |
max_width=input_col_max_width,
|
791 |
)
|
792 |
-
|
793 |
pn.pane.Markdown("### Wholesale details", margin=0),
|
794 |
self.wholesale_cbx_price_slider,
|
795 |
self.wholesale_cbx_pct_slider,
|
796 |
sizing_mode="stretch_width",
|
797 |
max_width=input_col_max_width,
|
798 |
)
|
799 |
-
|
800 |
-
pn.pane.Markdown("### Variable costs", margin=0),
|
801 |
self.kwh_per_kg_bio_slider,
|
802 |
self.water_liters_consumed_per_kg_bio_slider,
|
803 |
self.consumables_per_kg_output_slider,
|
804 |
sizing_mode="stretch_width",
|
805 |
max_width=input_col_max_width,
|
806 |
)
|
807 |
-
|
808 |
pn.pane.Markdown("### Compliance", margin=0),
|
809 |
self.batch_test_cost_slider,
|
810 |
pn.pane.Markdown("New Batch Every:", margin=0),
|
@@ -814,7 +788,7 @@ class CannabinoidEstimator(param.Parameterized):
|
|
814 |
sizing_mode="stretch_width",
|
815 |
max_width=input_col_max_width,
|
816 |
)
|
817 |
-
|
818 |
pn.pane.Markdown("### Worker Details", margin=0),
|
819 |
self.workers_per_shift_slider,
|
820 |
self.worker_hourly_rate_slider,
|
@@ -823,7 +797,7 @@ class CannabinoidEstimator(param.Parameterized):
|
|
823 |
sizing_mode="stretch_width",
|
824 |
max_width=input_col_max_width,
|
825 |
)
|
826 |
-
|
827 |
pn.pane.Markdown("### Shift details", margin=0),
|
828 |
self.labour_hours_per_shift_slider,
|
829 |
self.processing_hours_per_shift_slider,
|
@@ -833,20 +807,34 @@ class CannabinoidEstimator(param.Parameterized):
|
|
833 |
max_width=input_col_max_width,
|
834 |
)
|
835 |
|
836 |
-
# input_grid = pn.GridSpec(sizing_mode="stretch_width", max_width=1800, margin=10)
|
837 |
-
# input_grid[0, 0] = col1
|
838 |
-
# input_grid[0, 1] = col2
|
839 |
-
# input_grid[0, 2] = col3
|
840 |
-
# input_grid[0, 3] = col4
|
841 |
input_grid = pn.FlexBox(
|
842 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
843 |
)
|
844 |
|
845 |
-
|
846 |
-
pn.pane.Markdown(
|
847 |
-
|
|
|
|
|
848 |
sizing_mode="stretch_width",
|
849 |
-
max_width=
|
850 |
)
|
851 |
|
852 |
profit_table_display = pn.Column(
|
@@ -855,7 +843,6 @@ class CannabinoidEstimator(param.Parameterized):
|
|
855 |
sizing_mode="stretch_width",
|
856 |
max_width=input_col_max_width,
|
857 |
)
|
858 |
-
|
859 |
processing_table_display = pn.Column(
|
860 |
pn.pane.Markdown("### Processing Summary", styles={"text-align": "center"}),
|
861 |
self.processing_table,
|
@@ -863,34 +850,15 @@ class CannabinoidEstimator(param.Parameterized):
|
|
863 |
max_width=input_col_max_width,
|
864 |
)
|
865 |
|
866 |
-
# profit_weekly = pn.indicators.Number(
|
867 |
-
# name="Weekly Profit",
|
868 |
-
# value=self.net_rev_per_week,
|
869 |
-
# format=f"${self.net_rev_per_week / 1000:.0f} k",
|
870 |
-
# default_color="green",
|
871 |
-
# align="center",
|
872 |
-
# )
|
873 |
-
|
874 |
-
# profit_pct = pn.indicators.Number(
|
875 |
-
# name="Operating Profit",
|
876 |
-
# value=self.operating_profit_pct,
|
877 |
-
# format=f"{self.operating_profit_pct * 100.0:.2f}%",
|
878 |
-
# default_color="green",
|
879 |
-
# align="center",
|
880 |
-
# )
|
881 |
-
|
882 |
-
# indicator_layout = pn.Column(profit_pct, profit_weekly, align="center")
|
883 |
-
|
884 |
-
# table_grid = pn.GridSpec(sizing_mode="stretch_width", max_width=1800, margin=10)
|
885 |
-
# table_grid[:, 0:2] = tables_layout
|
886 |
-
# table_grid[:, 2] = indicator_layout
|
887 |
table_grid = pn.FlexBox(
|
888 |
self.profit_weekly,
|
889 |
self.profit_pct,
|
890 |
processing_table_display,
|
891 |
profit_table_display,
|
892 |
-
|
|
|
893 |
align_content="normal",
|
|
|
894 |
)
|
895 |
|
896 |
main_layout = pn.Column(
|
@@ -899,25 +867,12 @@ class CannabinoidEstimator(param.Parameterized):
|
|
899 |
table_grid,
|
900 |
styles={"margin": "0px 10px"},
|
901 |
)
|
902 |
-
|
903 |
return main_layout
|
904 |
|
905 |
|
906 |
-
estimator_app =
|
907 |
-
# To run in a Panel server:
|
908 |
-
# pn.config.raw_css = custom_themes.get_base_css(custom_themes.DARK_THEME_VARS)
|
909 |
estimator_app.view().servable(title="CBx Revenue Estimator")
|
910 |
|
911 |
-
# Instantiate the template with widgets displayed in the sidebar
|
912 |
-
# template = pn.template.FastListTemplate(
|
913 |
-
# title="CBx Revenue Estimator (FastList Panel)",
|
914 |
-
# #theme = custom_themes.DarkTheme,
|
915 |
-
# #sidebar=[freq, phase],
|
916 |
-
# )
|
917 |
-
|
918 |
-
# template.main.append(estimator_app.view())
|
919 |
-
# template.servable()
|
920 |
-
|
921 |
if __name__ == "__main__":
|
922 |
pn.serve(
|
923 |
estimator_app.view(),
|
|
|
34 |
return format_str
|
35 |
|
36 |
|
37 |
+
class CannabinoidCalculations(param.Parameterized):
|
38 |
# --- Input Parameters ---
|
39 |
kg_processed_per_hour = param.Number(
|
40 |
default=150.0,
|
|
|
135 |
shifts_per_week = param.Number(
|
136 |
default=21.0, bounds=(1, 28), step=1.0, label="Shifts per week"
|
137 |
)
|
138 |
+
batch_frequency = param.String(default="Day", label="New batch frequency")
|
|
|
|
|
139 |
|
140 |
+
# --- Calculated Attributes ---
|
141 |
kg_processed_per_shift = 0.0
|
142 |
labour_cost_per_shift = 0.0
|
143 |
variable_cost_per_shift = 0.0
|
|
|
167 |
net_rev_per_kg_output = 0.0
|
168 |
operating_profit_pct = 0.0
|
169 |
resin_spread_pct = 0.0
|
170 |
+
batch_test_cost_per_shift = 0.0
|
171 |
+
|
172 |
+
def __init__(self, **params):
|
173 |
+
super().__init__(**params)
|
174 |
+
|
175 |
+
@param.depends(
|
176 |
+
"kg_processed_per_hour",
|
177 |
+
"finished_product_yield_pct",
|
178 |
+
"kwh_rate",
|
179 |
+
"water_cost_per_1000l",
|
180 |
+
"consumables_per_kg_bio_rate",
|
181 |
+
"kwh_per_kg_bio",
|
182 |
+
"water_liters_consumed_per_kg_bio",
|
183 |
+
"consumables_per_kg_output",
|
184 |
+
"bio_cbx_pct",
|
185 |
+
"bio_cost",
|
186 |
+
"wholesale_cbx_price",
|
187 |
+
"wholesale_cbx_pct",
|
188 |
+
"batch_test_cost",
|
189 |
+
"batch_frequency",
|
190 |
+
"fixed_overhead_per_week",
|
191 |
+
"workers_per_shift",
|
192 |
+
"worker_hourly_rate",
|
193 |
+
"managers_per_shift",
|
194 |
+
"manager_hourly_rate",
|
195 |
+
"labour_hours_per_shift",
|
196 |
+
"processing_hours_per_shift",
|
197 |
+
"shifts_per_day",
|
198 |
+
"shifts_per_week",
|
199 |
+
watch=True,
|
200 |
+
)
|
201 |
+
def _update_calculations(self, *events):
|
202 |
+
self.kg_processed_per_shift = (
|
203 |
+
self.processing_hours_per_shift * self.kg_processed_per_hour
|
204 |
+
)
|
205 |
+
if self.shifts_per_week == 0:
|
206 |
+
self.shifts_per_week = 1
|
207 |
+
|
208 |
+
self._calc_saleable_kg()
|
209 |
+
self._calc_biomass_cost()
|
210 |
+
self._calc_cogs()
|
211 |
+
self._calc_gross_revenue()
|
212 |
+
self._calc_net_revenue()
|
213 |
+
|
214 |
+
self.operating_profit_pct = (
|
215 |
+
(self.net_rev_per_kg_bio / self.gross_rev_per_kg_bio)
|
216 |
+
if self.gross_rev_per_kg_bio
|
217 |
+
else 0.0
|
218 |
+
)
|
219 |
+
self.resin_spread_pct = (
|
220 |
+
((self.gross_rev_per_kg_bio - self.bio_cost) / self.bio_cost)
|
221 |
+
if self.bio_cost
|
222 |
+
else 0.0
|
223 |
+
)
|
224 |
+
|
225 |
+
self._post_calculation_update()
|
226 |
+
|
227 |
+
def _post_calculation_update(self):
|
228 |
+
pass
|
229 |
+
|
230 |
+
def _calc_cogs(self):
|
231 |
+
worker_cost = self.workers_per_shift * self.worker_hourly_rate
|
232 |
+
manager_cost = self.managers_per_shift * self.manager_hourly_rate
|
233 |
+
self.labour_cost_per_shift = (
|
234 |
+
worker_cost + manager_cost
|
235 |
+
) * self.labour_hours_per_shift
|
236 |
+
|
237 |
+
power_cost_per_kg = self.kwh_rate * self.kwh_per_kg_bio
|
238 |
+
water_cost_per_kg = (
|
239 |
+
self.water_cost_per_1000l / 1000.0
|
240 |
+
) * self.water_liters_consumed_per_kg_bio
|
241 |
+
total_variable_consumable_cost_per_kg = (
|
242 |
+
self.consumables_per_kg_bio_rate + power_cost_per_kg + water_cost_per_kg
|
243 |
+
)
|
244 |
+
self.variable_cost_per_shift = (
|
245 |
+
total_variable_consumable_cost_per_kg * self.kg_processed_per_shift
|
246 |
+
)
|
247 |
+
|
248 |
+
self.overhead_cost_per_shift = (
|
249 |
+
self.fixed_overhead_per_week / self.shifts_per_week
|
250 |
+
if self.shifts_per_week > 0
|
251 |
+
else 0.0
|
252 |
+
)
|
253 |
+
|
254 |
+
self.batch_test_cost_per_shift = 0.0
|
255 |
+
if self.batch_frequency == "Shift":
|
256 |
+
self.batch_test_cost_per_shift = self.batch_test_cost
|
257 |
+
elif self.batch_frequency == "Day":
|
258 |
+
if self.shifts_per_day > 0:
|
259 |
+
self.batch_test_cost_per_shift = (
|
260 |
+
self.batch_test_cost / self.shifts_per_day
|
261 |
+
)
|
262 |
+
else:
|
263 |
+
self.batch_test_cost_per_shift = 0.0
|
264 |
+
elif self.batch_frequency == "Week":
|
265 |
+
if self.shifts_per_week > 0:
|
266 |
+
self.batch_test_cost_per_shift = (
|
267 |
+
self.batch_test_cost / self.shifts_per_week
|
268 |
+
)
|
269 |
+
else:
|
270 |
+
self.batch_test_cost_per_shift = 0.0
|
271 |
+
|
272 |
+
shift_cogs_before_output_specific = (
|
273 |
+
self.labour_cost_per_shift
|
274 |
+
+ self.variable_cost_per_shift
|
275 |
+
+ self.overhead_cost_per_shift
|
276 |
+
+ self.batch_test_cost_per_shift
|
277 |
+
)
|
278 |
+
shift_output_specific_cogs = (
|
279 |
+
self.consumables_per_kg_output * self.saleable_kg_per_shift
|
280 |
+
)
|
281 |
+
|
282 |
+
self.internal_cogs_per_shift = (
|
283 |
+
shift_cogs_before_output_specific + shift_output_specific_cogs
|
284 |
+
)
|
285 |
+
self.internal_cogs_per_kg_bio = (
|
286 |
+
self.internal_cogs_per_shift / self.kg_processed_per_shift
|
287 |
+
if self.kg_processed_per_shift > 0
|
288 |
+
else 0.0
|
289 |
+
)
|
290 |
+
self.internal_cogs_per_day = self.internal_cogs_per_shift * self.shifts_per_day
|
291 |
+
self.internal_cogs_per_week = (
|
292 |
+
self.internal_cogs_per_shift * self.shifts_per_week
|
293 |
+
)
|
294 |
+
self.internal_cogs_per_kg_output = (
|
295 |
+
(self.internal_cogs_per_kg_bio * self.biomass_kg_per_saleable_kg)
|
296 |
+
if self.biomass_kg_per_saleable_kg != 0
|
297 |
+
else 0.0
|
298 |
+
)
|
299 |
+
|
300 |
+
def _calc_gross_revenue(self):
|
301 |
+
self.gross_rev_per_kg_bio = (
|
302 |
+
self.saleable_kg_per_kg_bio * self.wholesale_cbx_price
|
303 |
+
)
|
304 |
+
self.gross_rev_per_shift = (
|
305 |
+
self.gross_rev_per_kg_bio * self.kg_processed_per_shift
|
306 |
+
)
|
307 |
+
self.gross_rev_per_day = self.gross_rev_per_shift * self.shifts_per_day
|
308 |
+
self.gross_rev_per_week = self.gross_rev_per_shift * self.shifts_per_week
|
309 |
+
|
310 |
+
def _calc_net_revenue(self):
|
311 |
+
self.net_rev_per_kg_bio = (
|
312 |
+
self.gross_rev_per_kg_bio - self.internal_cogs_per_kg_bio - self.bio_cost
|
313 |
+
)
|
314 |
+
self.net_rev_per_shift = self.net_rev_per_kg_bio * self.kg_processed_per_shift
|
315 |
+
self.net_rev_per_day = self.net_rev_per_shift * self.shifts_per_day
|
316 |
+
self.net_rev_per_week = self.net_rev_per_shift * self.shifts_per_week
|
317 |
+
self.net_rev_per_kg_output = (
|
318 |
+
(self.biomass_kg_per_saleable_kg * self.net_rev_per_kg_bio)
|
319 |
+
if self.biomass_kg_per_saleable_kg != 0
|
320 |
+
else 0.0
|
321 |
+
)
|
322 |
|
323 |
+
def _calc_biomass_cost(self):
|
324 |
+
self.biomass_cost_per_shift = self.kg_processed_per_shift * self.bio_cost
|
325 |
+
self.biomass_cost_per_day = self.biomass_cost_per_shift * self.shifts_per_day
|
326 |
+
self.biomass_cost_per_week = self.biomass_cost_per_shift * self.shifts_per_week
|
327 |
+
|
328 |
+
def _calc_saleable_kg(self):
|
329 |
+
if self.wholesale_cbx_pct == 0:
|
330 |
+
self.saleable_kg_per_kg_bio = 0.0
|
331 |
+
else:
|
332 |
+
self.saleable_kg_per_kg_bio = (
|
333 |
+
(self.bio_cbx_pct / 100.0)
|
334 |
+
* (self.finished_product_yield_pct / 100.0)
|
335 |
+
/ (self.wholesale_cbx_pct / 100.0)
|
336 |
+
)
|
337 |
+
self.saleable_kg_per_shift = (
|
338 |
+
self.saleable_kg_per_kg_bio * self.kg_processed_per_shift
|
339 |
+
)
|
340 |
+
self.saleable_kg_per_day = self.saleable_kg_per_shift * self.shifts_per_day
|
341 |
+
self.saleable_kg_per_week = self.saleable_kg_per_shift * self.shifts_per_week
|
342 |
+
self.biomass_kg_per_saleable_kg = (
|
343 |
+
1 / self.saleable_kg_per_kg_bio if self.saleable_kg_per_kg_bio > 0 else 0.0
|
344 |
+
)
|
345 |
+
self.biomass_cost_per_kg_output = (
|
346 |
+
self.biomass_kg_per_saleable_kg * self.bio_cost
|
347 |
+
)
|
348 |
+
|
349 |
+
|
350 |
+
class CannabinoidEstimatorGUI(CannabinoidCalculations):
|
351 |
+
money_data_unit_df = param.DataFrame(
|
352 |
+
pd.DataFrame()
|
353 |
+
) # For $/kg Biomass and $/kg Output
|
354 |
+
money_data_time_df = param.DataFrame(
|
355 |
+
pd.DataFrame()
|
356 |
+
) # For Per Shift, Per Day, Per Week
|
357 |
profit_data_df = param.DataFrame(pd.DataFrame())
|
358 |
processing_data_df = param.DataFrame(pd.DataFrame())
|
359 |
|
360 |
def __init__(self, **params):
|
361 |
super().__init__(**params)
|
362 |
self._create_sliders()
|
363 |
+
|
364 |
+
# Table for $/kg Biomass and $/kg Output
|
365 |
+
self.money_unit_table = pn.widgets.Tabulator(
|
366 |
+
self.money_data_unit_df,
|
367 |
+
formatters={
|
368 |
+
"$/kg Biomass": get_formatter("$%.02f"),
|
369 |
+
"$/kg Output": get_formatter("$%.02f"),
|
370 |
+
},
|
371 |
disabled=True,
|
372 |
layout="fit_data",
|
373 |
sizing_mode="fixed",
|
374 |
align="center",
|
375 |
+
show_index=False,
|
376 |
text_align={
|
377 |
" ": "right",
|
378 |
"$/kg Biomass": "center",
|
379 |
"$/kg Output": "center",
|
380 |
+
},
|
381 |
+
)
|
382 |
+
|
383 |
+
# Table for Per Shift, Per Day, Per Week
|
384 |
+
self.money_time_table = pn.widgets.Tabulator(
|
385 |
+
self.money_data_time_df,
|
386 |
+
formatters={
|
387 |
+
"Per Shift": get_formatter("$%.02f"),
|
388 |
+
"Per Day": get_formatter("$%.02f"),
|
389 |
+
"Per Week": get_formatter("$%.02f"),
|
390 |
+
},
|
391 |
+
disabled=True,
|
392 |
+
layout="fit_data",
|
393 |
+
sizing_mode="fixed",
|
394 |
+
align="center",
|
395 |
+
show_index=False,
|
396 |
+
text_align={
|
397 |
+
" ": "right",
|
398 |
"Per Shift": "center",
|
399 |
"Per Day": "center",
|
400 |
"Per Week": "center",
|
401 |
},
|
402 |
)
|
403 |
+
|
404 |
self.profit_table = pn.widgets.Tabulator(
|
405 |
self.profit_data_df,
|
406 |
disabled=True,
|
407 |
layout="fit_data_table",
|
408 |
sizing_mode="fixed",
|
409 |
align="center",
|
410 |
+
show_index=False,
|
411 |
+
text_align={"Metric": "right", "Value": "center"},
|
|
|
|
|
|
|
412 |
)
|
413 |
self.processing_table = pn.widgets.Tabulator(
|
414 |
self.processing_data_df,
|
|
|
417 |
layout="fit_data_table",
|
418 |
sizing_mode="fixed",
|
419 |
align="center",
|
420 |
+
show_index=False,
|
421 |
+
text_align={"Metric (Per Shift)": "right", "Value": "center"},
|
|
|
|
|
|
|
422 |
)
|
423 |
self.profit_weekly = pn.indicators.Number(
|
424 |
name="Weekly Profit",
|
425 |
+
value=0,
|
426 |
+
format="$0 k",
|
427 |
default_color="green",
|
428 |
align="center",
|
429 |
)
|
430 |
self.profit_pct = pn.indicators.Number(
|
431 |
name="Operating Profit",
|
432 |
+
value=0,
|
433 |
+
format="0.00%",
|
434 |
default_color="green",
|
435 |
align="center",
|
436 |
)
|
437 |
+
|
438 |
self._update_calculations()
|
439 |
|
440 |
def _create_sliders(self):
|
441 |
self.kg_processed_per_hour_slider = pn.widgets.EditableFloatSlider.from_param(
|
442 |
self.param.kg_processed_per_hour,
|
443 |
name=self.param.kg_processed_per_hour.label,
|
|
|
|
|
444 |
design=slider_design,
|
445 |
styles=slider_style,
|
446 |
stylesheets=slider_stylesheet,
|
|
|
447 |
format=PrintfTickFormatter(format="%i kg"),
|
448 |
)
|
449 |
self.finished_product_yield_pct_slider = (
|
450 |
pn.widgets.EditableFloatSlider.from_param(
|
451 |
self.param.finished_product_yield_pct,
|
452 |
name=self.param.finished_product_yield_pct.label,
|
|
|
|
|
453 |
design=slider_design,
|
454 |
styles=slider_style,
|
455 |
stylesheets=slider_stylesheet,
|
|
|
459 |
self.kwh_rate_slider = pn.widgets.EditableFloatSlider.from_param(
|
460 |
self.param.kwh_rate,
|
461 |
name=self.param.kwh_rate.label,
|
|
|
|
|
462 |
design=slider_design,
|
463 |
styles=slider_style,
|
464 |
stylesheets=slider_stylesheet,
|
465 |
format="0.00",
|
|
|
466 |
)
|
467 |
self.water_cost_per_1000l_slider = pn.widgets.EditableFloatSlider.from_param(
|
468 |
self.param.water_cost_per_1000l,
|
469 |
name=self.param.water_cost_per_1000l.label,
|
|
|
|
|
470 |
design=slider_design,
|
471 |
styles=slider_style,
|
472 |
stylesheets=slider_stylesheet,
|
|
|
476 |
pn.widgets.EditableFloatSlider.from_param(
|
477 |
self.param.consumables_per_kg_bio_rate,
|
478 |
name=self.param.consumables_per_kg_bio_rate.label,
|
|
|
|
|
479 |
design=slider_design,
|
480 |
styles=slider_style,
|
481 |
stylesheets=slider_stylesheet,
|
|
|
485 |
self.kwh_per_kg_bio_slider = pn.widgets.EditableFloatSlider.from_param(
|
486 |
self.param.kwh_per_kg_bio,
|
487 |
name=self.param.kwh_per_kg_bio.label,
|
|
|
|
|
488 |
design=slider_design,
|
489 |
styles=slider_style,
|
490 |
stylesheets=slider_stylesheet,
|
|
|
494 |
pn.widgets.EditableFloatSlider.from_param(
|
495 |
self.param.water_liters_consumed_per_kg_bio,
|
496 |
name=self.param.water_liters_consumed_per_kg_bio.label,
|
|
|
|
|
497 |
design=slider_design,
|
498 |
styles=slider_style,
|
499 |
stylesheets=slider_stylesheet,
|
|
|
504 |
pn.widgets.EditableFloatSlider.from_param(
|
505 |
self.param.consumables_per_kg_output,
|
506 |
name=self.param.consumables_per_kg_output.label,
|
|
|
|
|
507 |
design=slider_design,
|
508 |
styles=slider_style,
|
509 |
stylesheets=slider_stylesheet,
|
|
|
513 |
self.bio_cbx_pct_slider = pn.widgets.EditableFloatSlider.from_param(
|
514 |
self.param.bio_cbx_pct,
|
515 |
name=self.param.bio_cbx_pct.label,
|
|
|
|
|
516 |
design=slider_design,
|
517 |
styles=slider_style,
|
518 |
stylesheets=slider_stylesheet,
|
|
|
521 |
self.bio_cost_slider = pn.widgets.EditableFloatSlider.from_param(
|
522 |
self.param.bio_cost,
|
523 |
name=self.param.bio_cost.label,
|
|
|
|
|
524 |
design=slider_design,
|
525 |
styles=slider_style,
|
526 |
stylesheets=slider_stylesheet,
|
|
|
529 |
self.wholesale_cbx_price_slider = pn.widgets.EditableFloatSlider.from_param(
|
530 |
self.param.wholesale_cbx_price,
|
531 |
name=self.param.wholesale_cbx_price.label,
|
|
|
|
|
532 |
design=slider_design,
|
533 |
styles=slider_style,
|
534 |
stylesheets=slider_stylesheet,
|
|
|
537 |
self.wholesale_cbx_pct_slider = pn.widgets.EditableFloatSlider.from_param(
|
538 |
self.param.wholesale_cbx_pct,
|
539 |
name=self.param.wholesale_cbx_pct.label,
|
|
|
|
|
540 |
design=slider_design,
|
541 |
styles=slider_style,
|
542 |
stylesheets=slider_stylesheet,
|
|
|
545 |
self.batch_test_cost_slider = pn.widgets.EditableFloatSlider.from_param(
|
546 |
self.param.batch_test_cost,
|
547 |
name=self.param.batch_test_cost.label,
|
|
|
|
|
548 |
design=slider_design,
|
549 |
styles=slider_style,
|
550 |
stylesheets=slider_stylesheet,
|
|
|
553 |
self.fixed_overhead_per_week_slider = pn.widgets.EditableFloatSlider.from_param(
|
554 |
self.param.fixed_overhead_per_week,
|
555 |
name=self.param.fixed_overhead_per_week.label,
|
|
|
|
|
556 |
design=slider_design,
|
557 |
styles=slider_style,
|
558 |
stylesheets=slider_stylesheet,
|
|
|
561 |
self.workers_per_shift_slider = pn.widgets.EditableFloatSlider.from_param(
|
562 |
self.param.workers_per_shift,
|
563 |
name=self.param.workers_per_shift.label,
|
|
|
|
|
564 |
design=slider_design,
|
565 |
styles=slider_style,
|
566 |
stylesheets=slider_stylesheet,
|
|
|
569 |
self.worker_hourly_rate_slider = pn.widgets.EditableFloatSlider.from_param(
|
570 |
self.param.worker_hourly_rate,
|
571 |
name=self.param.worker_hourly_rate.label,
|
|
|
|
|
572 |
design=slider_design,
|
573 |
styles=slider_style,
|
574 |
stylesheets=slider_stylesheet,
|
|
|
577 |
self.managers_per_shift_slider = pn.widgets.EditableFloatSlider.from_param(
|
578 |
self.param.managers_per_shift,
|
579 |
name=self.param.managers_per_shift.label,
|
|
|
|
|
580 |
design=slider_design,
|
581 |
styles=slider_style,
|
582 |
stylesheets=slider_stylesheet,
|
|
|
585 |
self.manager_hourly_rate_slider = pn.widgets.EditableFloatSlider.from_param(
|
586 |
self.param.manager_hourly_rate,
|
587 |
name=self.param.manager_hourly_rate.label,
|
|
|
|
|
588 |
design=slider_design,
|
589 |
styles=slider_style,
|
590 |
stylesheets=slider_stylesheet,
|
591 |
format="0.00",
|
592 |
)
|
|
|
593 |
self.labour_hours_per_shift_slider = pn.widgets.EditableFloatSlider.from_param(
|
594 |
self.param.labour_hours_per_shift,
|
595 |
name=self.param.labour_hours_per_shift.label,
|
|
|
|
|
|
|
|
|
596 |
design=slider_design,
|
597 |
styles=slider_style,
|
598 |
stylesheets=slider_stylesheet,
|
599 |
format="0.00",
|
600 |
)
|
|
|
601 |
self.processing_hours_per_shift_slider = (
|
602 |
pn.widgets.EditableFloatSlider.from_param(
|
603 |
self.param.processing_hours_per_shift,
|
604 |
name=self.param.processing_hours_per_shift.label,
|
|
|
|
|
605 |
design=slider_design,
|
606 |
styles=slider_style,
|
607 |
stylesheets=slider_stylesheet,
|
608 |
format="0.00",
|
609 |
)
|
610 |
)
|
|
|
611 |
self.shifts_per_day_slider = pn.widgets.EditableFloatSlider.from_param(
|
612 |
self.param.shifts_per_day,
|
613 |
name=self.param.shifts_per_day.label,
|
|
|
|
|
614 |
design=slider_design,
|
615 |
styles=slider_style,
|
616 |
stylesheets=slider_stylesheet,
|
|
|
619 |
self.shifts_per_week_slider = pn.widgets.EditableFloatSlider.from_param(
|
620 |
self.param.shifts_per_week,
|
621 |
name=self.param.shifts_per_week.label,
|
|
|
|
|
622 |
design=slider_design,
|
623 |
styles=slider_style,
|
624 |
stylesheets=slider_stylesheet,
|
625 |
format="0",
|
626 |
)
|
|
|
627 |
self.batch_frequency_radio = pn.widgets.RadioButtonGroup.from_param(
|
628 |
self.param.batch_frequency,
|
629 |
name=self.param.batch_frequency.label,
|
|
|
631 |
button_type="primary",
|
632 |
)
|
633 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
634 |
@param.depends("labour_hours_per_shift", watch=True)
|
635 |
def _update_processing_hours_slider_constraints(self):
|
636 |
new_max_processing_hours = self.labour_hours_per_shift
|
|
|
|
|
637 |
current_min_processing_hours = self.param.processing_hours_per_shift.bounds[0]
|
|
|
|
|
|
|
638 |
self.param.processing_hours_per_shift.bounds = (
|
639 |
current_min_processing_hours,
|
640 |
new_max_processing_hours,
|
641 |
)
|
|
|
|
|
642 |
if hasattr(self, "processing_hours_per_shift_slider"):
|
|
|
643 |
self.processing_hours_per_shift_slider.end = new_max_processing_hours
|
|
|
|
|
|
|
644 |
if self.processing_hours_per_shift > new_max_processing_hours:
|
645 |
self.processing_hours_per_shift = new_max_processing_hours
|
646 |
|
647 |
+
def _post_calculation_update(self):
|
648 |
+
self._update_tables_data()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
649 |
|
650 |
def _update_tables_data(self):
|
651 |
+
metric_names = [
|
652 |
+
"Biomass cost",
|
653 |
+
"Processing cost",
|
654 |
+
"Gross Revenue",
|
655 |
+
"Net Revenue",
|
656 |
+
]
|
657 |
+
|
658 |
+
# Data for Unit-based table
|
659 |
+
money_data_unit_dict = {
|
660 |
+
" ": metric_names,
|
661 |
"$/kg Biomass": [
|
662 |
self.bio_cost,
|
663 |
self.internal_cogs_per_kg_bio,
|
|
|
670 |
self.wholesale_cbx_price,
|
671 |
self.net_rev_per_kg_output,
|
672 |
],
|
673 |
+
}
|
674 |
+
self.money_data_unit_df = pd.DataFrame(money_data_unit_dict)
|
675 |
+
if hasattr(self, "money_unit_table"):
|
676 |
+
self.money_unit_table.value = self.money_data_unit_df
|
677 |
+
|
678 |
+
# Data for Time-based table
|
679 |
+
money_data_time_dict = {
|
680 |
+
" ": metric_names,
|
681 |
"Per Shift": [
|
682 |
self.biomass_cost_per_shift,
|
683 |
self.internal_cogs_per_shift,
|
|
|
697 |
self.net_rev_per_week,
|
698 |
],
|
699 |
}
|
700 |
+
self.money_data_time_df = pd.DataFrame(money_data_time_dict)
|
701 |
+
if hasattr(self, "money_time_table"):
|
702 |
+
self.money_time_table.value = self.money_data_time_df
|
703 |
|
704 |
profit_data_dict = {
|
705 |
"Metric": ["Operating Profit", "Resin Spread"],
|
|
|
730 |
self.processing_data_df = pd.DataFrame(processing_data_dict)
|
731 |
if hasattr(self, "processing_table"):
|
732 |
self.processing_table.value = self.processing_data_df
|
733 |
+
|
734 |
if hasattr(self, "profit_weekly"):
|
735 |
self.profit_weekly.value = self.net_rev_per_week
|
736 |
self.profit_weekly.format = f"${self.net_rev_per_week / 1000:.0f} k"
|
737 |
+
|
738 |
if hasattr(self, "profit_pct"):
|
739 |
self.profit_pct.value = self.operating_profit_pct
|
740 |
+
self.profit_pct.format = f"{self.operating_profit_pct * 100.0:.2f}%"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
741 |
|
742 |
def view(self):
|
743 |
input_col_max_width = 400
|
744 |
+
extractionCol = pn.Column(
|
745 |
"### Extraction",
|
746 |
self.kg_processed_per_hour_slider,
|
747 |
self.finished_product_yield_pct_slider,
|
748 |
sizing_mode="stretch_width",
|
749 |
max_width=input_col_max_width,
|
750 |
)
|
751 |
+
biomassCol = pn.Column(
|
752 |
pn.pane.Markdown("### Biomass parameters", margin=0),
|
753 |
self.bio_cbx_pct_slider,
|
754 |
self.bio_cost_slider,
|
755 |
sizing_mode="stretch_width",
|
756 |
max_width=input_col_max_width,
|
757 |
)
|
758 |
+
consumableCol = pn.Column(
|
759 |
pn.pane.Markdown("### Consumable rates", margin=0),
|
760 |
self.kwh_rate_slider,
|
761 |
self.water_cost_per_1000l_slider,
|
|
|
763 |
sizing_mode="stretch_width",
|
764 |
max_width=input_col_max_width,
|
765 |
)
|
766 |
+
wholesaleCol = pn.Column(
|
767 |
pn.pane.Markdown("### Wholesale details", margin=0),
|
768 |
self.wholesale_cbx_price_slider,
|
769 |
self.wholesale_cbx_pct_slider,
|
770 |
sizing_mode="stretch_width",
|
771 |
max_width=input_col_max_width,
|
772 |
)
|
773 |
+
variableCol = pn.Column(
|
774 |
+
pn.pane.Markdown("### Variable processing costs", margin=0),
|
775 |
self.kwh_per_kg_bio_slider,
|
776 |
self.water_liters_consumed_per_kg_bio_slider,
|
777 |
self.consumables_per_kg_output_slider,
|
778 |
sizing_mode="stretch_width",
|
779 |
max_width=input_col_max_width,
|
780 |
)
|
781 |
+
complianceBatchCol = pn.Column(
|
782 |
pn.pane.Markdown("### Compliance", margin=0),
|
783 |
self.batch_test_cost_slider,
|
784 |
pn.pane.Markdown("New Batch Every:", margin=0),
|
|
|
788 |
sizing_mode="stretch_width",
|
789 |
max_width=input_col_max_width,
|
790 |
)
|
791 |
+
workerCol = pn.Column(
|
792 |
pn.pane.Markdown("### Worker Details", margin=0),
|
793 |
self.workers_per_shift_slider,
|
794 |
self.worker_hourly_rate_slider,
|
|
|
797 |
sizing_mode="stretch_width",
|
798 |
max_width=input_col_max_width,
|
799 |
)
|
800 |
+
shiftCol = pn.Column(
|
801 |
pn.pane.Markdown("### Shift details", margin=0),
|
802 |
self.labour_hours_per_shift_slider,
|
803 |
self.processing_hours_per_shift_slider,
|
|
|
807 |
max_width=input_col_max_width,
|
808 |
)
|
809 |
|
|
|
|
|
|
|
|
|
|
|
810 |
input_grid = pn.FlexBox(
|
811 |
+
extractionCol,
|
812 |
+
biomassCol,
|
813 |
+
consumableCol,
|
814 |
+
wholesaleCol,
|
815 |
+
variableCol,
|
816 |
+
workerCol,
|
817 |
+
shiftCol,
|
818 |
+
complianceBatchCol,
|
819 |
+
align_content="normal",
|
820 |
+
)
|
821 |
+
|
822 |
+
money_unit_table_display = pn.Column(
|
823 |
+
pn.pane.Markdown(
|
824 |
+
"### Financial Summary (Per Unit)", styles={"text-align": "center"}
|
825 |
+
),
|
826 |
+
self.money_unit_table,
|
827 |
+
sizing_mode="stretch_width",
|
828 |
+
max_width=input_col_max_width + 50, # Slightly wider for two data columns
|
829 |
)
|
830 |
|
831 |
+
money_time_table_display = pn.Column(
|
832 |
+
pn.pane.Markdown(
|
833 |
+
"### Financial Summary (Aggregated)", styles={"text-align": "center"}
|
834 |
+
),
|
835 |
+
self.money_time_table,
|
836 |
sizing_mode="stretch_width",
|
837 |
+
max_width=500, # Accommodate three data columns
|
838 |
)
|
839 |
|
840 |
profit_table_display = pn.Column(
|
|
|
843 |
sizing_mode="stretch_width",
|
844 |
max_width=input_col_max_width,
|
845 |
)
|
|
|
846 |
processing_table_display = pn.Column(
|
847 |
pn.pane.Markdown("### Processing Summary", styles={"text-align": "center"}),
|
848 |
self.processing_table,
|
|
|
850 |
max_width=input_col_max_width,
|
851 |
)
|
852 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
853 |
table_grid = pn.FlexBox(
|
854 |
self.profit_weekly,
|
855 |
self.profit_pct,
|
856 |
processing_table_display,
|
857 |
profit_table_display,
|
858 |
+
money_unit_table_display,
|
859 |
+
money_time_table_display, # Added new tables here
|
860 |
align_content="normal",
|
861 |
+
flex_wrap="wrap", # Ensure wrapping for smaller screens
|
862 |
)
|
863 |
|
864 |
main_layout = pn.Column(
|
|
|
867 |
table_grid,
|
868 |
styles={"margin": "0px 10px"},
|
869 |
)
|
|
|
870 |
return main_layout
|
871 |
|
872 |
|
873 |
+
estimator_app = CannabinoidEstimatorGUI()
|
|
|
|
|
874 |
estimator_app.view().servable(title="CBx Revenue Estimator")
|
875 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
876 |
if __name__ == "__main__":
|
877 |
pn.serve(
|
878 |
estimator_app.view(),
|