Spaces:
Sleeping
Sleeping
File size: 15,378 Bytes
8d505d1 89bf277 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import panel as pn
import pandas as pd
import param
from bokeh.models.formatters import PrintfTickFormatter
from calculations import CannabinoidCalculations
from config import slider_design, slider_style, slider_stylesheet, get_formatter
class CannabinoidEstimatorGUI(CannabinoidCalculations):
# DataFrame params for tables
money_data_unit_df = param.DataFrame(
pd.DataFrame(),
precedence=-1, # precedence to hide from param pane if shown
)
money_data_time_df = param.DataFrame(pd.DataFrame(), precedence=-1)
profit_data_df = param.DataFrame(pd.DataFrame(), precedence=-1)
processing_data_df = param.DataFrame(pd.DataFrame(), precedence=-1)
def __init__(self, **params):
super().__init__(**params)
self._create_sliders()
self._create_tables_and_indicators()
self._update_calculations() # Initial calculation and table update
def _create_sliders(self):
self.batch_frequency_radio = pn.widgets.RadioButtonGroup.from_param(
self.param.batch_frequency,
name=self.param.batch_frequency.label,
options=["Shift", "Day", "Week"],
button_type="primary",
)
def _create_tables_and_indicators(self):
# Table for $/kg Biomass and $/kg Output
self.money_unit_table = pn.widgets.Tabulator(
self.money_data_unit_df, # Initial empty or pre-filled df
formatters={
"$/kg Biomass": get_formatter("$%.02f"),
"$/kg Output": get_formatter("$%.02f"),
},
disabled=True,
layout="fit_data",
sizing_mode="fixed",
align="center",
show_index=False,
text_align={
" ": "right",
"$/kg Biomass": "center",
"$/kg Output": "center",
},
)
# Table for Per Shift, Per Day, Per Week
self.money_time_table = pn.widgets.Tabulator(
self.money_data_time_df, # Initial empty or pre-filled df
formatters={
"Per Shift": get_formatter("$%.02f"),
"Per Day": get_formatter("$%.02f"),
"Per Week": get_formatter("$%.02f"),
},
disabled=True,
layout="fit_data",
sizing_mode="fixed",
align="center",
show_index=False,
text_align={
" ": "right",
"Per Shift": "center",
"Per Day": "center",
"Per Week": "center",
},
)
self.profit_table = pn.widgets.Tabulator(
self.profit_data_df, # Initial empty or pre-filled df
disabled=True,
layout="fit_data_table",
sizing_mode="fixed",
align="center",
show_index=False,
text_align={"Metric": "right", "Value": "center"},
)
self.processing_table = pn.widgets.Tabulator(
self.processing_data_df, # Initial empty or pre-filled df
formatters={},
disabled=True,
layout="fit_data_table",
sizing_mode="fixed",
align="center",
show_index=False,
text_align={"Metric (Per Shift)": "right", "Value": "center"},
)
self.profit_weekly = pn.indicators.Number(
name="Weekly Profit",
value=0,
format="$0 k",
default_color="green",
align="center",
)
self.profit_pct = pn.indicators.Number(
name="Operating Profit",
value=0,
format="0.00%",
default_color="green",
align="center",
)
@param.depends("labour_hours_per_shift", watch=True)
def _update_processing_hours_slider_constraints(self):
new_max_processing_hours = self.labour_hours_per_shift
# Ensure min bound is not greater than new max bound
current_min_processing_hours = min(
self.param.processing_hours_per_shift.bounds[0], new_max_processing_hours
)
self.param.processing_hours_per_shift.bounds = (
current_min_processing_hours,
new_max_processing_hours,
)
# Check if processing_hours_per_shift_slider exists before trying to update it
if hasattr(self, "processing_hours_per_shift_slider"):
self.processing_hours_per_shift_slider.end = new_max_processing_hours
if self.processing_hours_per_shift > new_max_processing_hours:
self.processing_hours_per_shift = new_max_processing_hours
# Also update start if it's now greater than end
if self.processing_hours_per_shift_slider.start > new_max_processing_hours:
self.processing_hours_per_shift_slider.start = (
current_min_processing_hours # or new_max_processing_hours
)
def _post_calculation_update(self):
"""Overrides the base class method to update GUI elements."""
super()._post_calculation_update() # Call base class method if it has any logic
self._update_tables_data()
def _update_tables_data(self):
metric_names = [
"Biomass cost",
"Processing cost",
"Gross Revenue",
"Net Revenue",
]
money_data_unit_dict = {
" ": metric_names,
"$/kg Biomass": [
self.bio_cost,
self.internal_cogs_per_kg_bio,
self.gross_rev_per_kg_bio,
self.net_rev_per_kg_bio,
],
"$/kg Output": [
self.biomass_cost_per_kg_output,
self.internal_cogs_per_kg_output,
self.wholesale_cbx_price,
self.net_rev_per_kg_output,
],
}
self.money_data_unit_df = pd.DataFrame(money_data_unit_dict)
if hasattr(self, "money_unit_table"):
self.money_unit_table.value = self.money_data_unit_df
money_data_time_dict = {
" ": metric_names,
"Per Shift": [
self.biomass_cost_per_shift,
self.internal_cogs_per_shift,
self.gross_rev_per_shift,
self.net_rev_per_shift,
],
"Per Day": [
self.biomass_cost_per_day,
self.internal_cogs_per_day,
self.gross_rev_per_day,
self.net_rev_per_day,
],
"Per Week": [
self.biomass_cost_per_week,
self.internal_cogs_per_week,
self.gross_rev_per_week,
self.net_rev_per_week,
],
}
self.money_data_time_df = pd.DataFrame(money_data_time_dict)
if hasattr(self, "money_time_table"):
self.money_time_table.value = self.money_data_time_df
profit_data_dict = {
"Metric": ["Operating Profit", "Resin Spread"],
"Value": [
f"{self.operating_profit_pct * 100.0:.2f}%",
f"{self.resin_spread_pct * 100.0:.2f}%",
],
}
self.profit_data_df = pd.DataFrame(profit_data_dict)
if hasattr(self, "profit_table"):
self.profit_table.value = self.profit_data_df
processing_values_formatted_shift = [
f"{self.kg_processed_per_shift:,.0f}",
f"{self.saleable_kg_per_shift:,.0f}",
f"${self.labour_cost_per_shift:,.2f}",
f"${self.variable_cost_per_shift:,.2f}",
f"${self.overhead_cost_per_shift:,.2f}",
]
processing_values_formatted_day = [
f"{self.kg_processed_per_shift * self.shifts_per_day:,.0f}",
f"{self.saleable_kg_per_day:,.0f}",
f"${self.labour_cost_per_shift * self.shifts_per_day:,.2f}",
f"${self.variable_cost_per_shift * self.shifts_per_day:,.2f}",
f"${self.overhead_cost_per_shift * self.shifts_per_day:,.2f}",
]
processing_values_formatted_week = [
f"{self.kg_processed_per_shift * self.shifts_per_week:,.0f}",
f"{self.saleable_kg_per_week:,.0f}",
f"${self.labour_cost_per_shift * self.shifts_per_week:,.2f}",
f"${self.variable_cost_per_shift * self.shifts_per_week:,.2f}",
f"${self.overhead_cost_per_shift * self.shifts_per_week:,.2f}",
]
processing_data_dict = {
"Metric Per": [
"Kilograms Extracted",
"Kg CBx Produced",
"Labour Cost",
"Variable Cost",
"Overhead",
],
"Shift": processing_values_formatted_shift,
"Day": processing_values_formatted_day,
"Week": processing_values_formatted_week,
}
self.processing_data_df = pd.DataFrame(processing_data_dict)
if hasattr(self, "processing_table"):
self.processing_table.value = self.processing_data_df
if hasattr(self, "profit_weekly"):
self.profit_weekly.value = self.net_rev_per_week
# Ensure format updates if value changes significantly (e.g. from 0 to large number)
self.profit_weekly.format = (
f"${self.net_rev_per_week / 1000:.0f} k"
if self.net_rev_per_week != 0
else "$0 k"
)
if hasattr(self, "profit_pct"):
self.profit_pct.value = self.operating_profit_pct
self.profit_pct.format = f"{self.operating_profit_pct * 100.0:.2f}%"
def view(self):
input_col_max_width = 400
extractionCol = pn.Column(
"### Extraction",
self.param.kg_processed_per_hour,
self.param.finished_product_yield_pct,
sizing_mode="stretch_width",
max_width=input_col_max_width,
)
biomassCol = pn.Column(
pn.pane.Markdown("### Biomass parameters", margin=0),
self.param.bio_cbx_pct,
self.param.bio_cost,
sizing_mode="stretch_width",
max_width=input_col_max_width,
)
consumableCol = pn.Column(
pn.pane.Markdown("### Consumable rates", margin=0),
self.param.kwh_rate,
self.param.water_cost_per_1000l,
self.param.consumables_per_kg_bio_rate,
sizing_mode="stretch_width",
max_width=input_col_max_width,
)
wholesaleCol = pn.Column(
pn.pane.Markdown("### Wholesale details", margin=0),
self.param.wholesale_cbx_price,
self.param.wholesale_cbx_pct,
sizing_mode="stretch_width",
max_width=input_col_max_width,
)
variableCol = pn.Column(
pn.pane.Markdown("### Variable processing costs", margin=0),
self.param.kwh_per_kg_bio,
self.param.water_liters_consumed_per_kg_bio,
self.param.consumables_per_kg_output,
sizing_mode="stretch_width",
max_width=input_col_max_width,
)
complianceBatchCol = pn.Column(
pn.pane.Markdown("### Compliance", margin=0),
self.param.batch_test_cost,
pn.pane.Markdown("New Batch Every:", margin=0),
self.batch_frequency_radio,
sizing_mode="stretch_width",
max_width=input_col_max_width,
)
leechCol = pn.Column(
pn.pane.Markdown("### Weekly Rent & Fixed Overheads", margin=0),
self.param.weekly_rent,
self.param.non_production_electricity_cost_weekly,
self.param.property_insurance_weekly,
self.param.general_liability_insurance_weekly,
self.param.product_recall_insurance_weekly,
sizing_mode="stretch_width",
max_width=input_col_max_width,
)
workerCol = pn.Column(
pn.pane.Markdown("### Worker Details", margin=0),
self.param.workers_per_shift,
self.param.worker_base_pay_rate,
self.param.managers_per_shift,
self.param.manager_base_pay_rate,
self.param.direct_cost_pct,
sizing_mode="stretch_width",
max_width=input_col_max_width,
)
shiftCol = pn.Column(
pn.pane.Markdown("### Shift details", margin=0),
self.param.labour_hours_per_shift,
self.param.processing_hours_per_shift,
self.param.shifts_per_day,
self.param.shifts_per_week,
sizing_mode="stretch_width",
max_width=input_col_max_width,
)
input_grid = pn.FlexBox(
extractionCol,
biomassCol,
consumableCol,
wholesaleCol,
variableCol,
complianceBatchCol,
workerCol,
shiftCol,
leechCol,
align_content="flex-start",
align_items="flex-start",
# valid options include: '[stretch, flex-start, flex-end, center, baseline, first baseline, last baseline, start, end, self-start, self-end]'
flex_wrap="wrap",
) # Added flex_wrap
money_unit_table_display = pn.Column(
pn.pane.Markdown(
"### Financial Summary (Per Unit)", styles={"text-align": "center"}
),
self.money_unit_table,
sizing_mode="stretch_width",
max_width=input_col_max_width + 50,
)
money_time_table_display = pn.Column(
pn.pane.Markdown(
"### Financial Summary (Aggregated)", styles={"text-align": "center"}
),
self.money_time_table,
sizing_mode="stretch_width",
max_width=500,
)
profit_table_display = pn.Column(
pn.pane.Markdown("### Profitability", styles={"text-align": "center"}),
self.profit_table,
sizing_mode="stretch_width",
max_width=input_col_max_width,
)
processing_table_display = pn.Column(
pn.pane.Markdown("### Processing Summary", styles={"text-align": "center"}),
self.processing_table,
sizing_mode="stretch_width",
max_width=input_col_max_width,
)
table_grid = pn.FlexBox(
self.profit_weekly,
self.profit_pct,
processing_table_display,
profit_table_display,
money_unit_table_display,
money_time_table_display,
align_content="normal",
flex_wrap="wrap",
)
main_layout = pn.Column(
pn.Accordion(("Knobs & Dials",input_grid)),
pn.layout.Divider(margin=(10, 0)),
table_grid,
styles={"margin": "0px 10px"},
)
return main_layout |