Spaces:
Runtime error
Runtime error
Create conditioning_shifter.py
Browse files- conditioning_shifter.py +402 -0
conditioning_shifter.py
ADDED
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import logging
|
4 |
+
from typing import Dict, List, Tuple, Optional, Any
|
5 |
+
from dataclasses import dataclass
|
6 |
+
|
7 |
+
from ..model.dual_stream_adapter_model import ConditionModulationShuntAdapter, reshape_for_shunt
|
8 |
+
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
@dataclass
|
12 |
+
class ShiftConfig:
|
13 |
+
"""Unified configuration for all modifications"""
|
14 |
+
prompt: str = ""
|
15 |
+
seed: int = -1 # -1 means no seed, use random
|
16 |
+
strength: float = 1.0
|
17 |
+
delta_mean: float = 0.0
|
18 |
+
delta_scale: float = 1.0
|
19 |
+
sigma_scale: float = 0.0
|
20 |
+
gate_probability: float = 1.0
|
21 |
+
gate_threshold: float = 0.1
|
22 |
+
noise_injection: float = 0.0
|
23 |
+
use_anchor: bool = True
|
24 |
+
pool_method: str = "sequential" # "sequential" or "weighted_average"
|
25 |
+
# Top-K parameters
|
26 |
+
use_topk: bool = False
|
27 |
+
topk_percentage: float = 100.0 # Percentage of tokens to keep
|
28 |
+
tau_temperature: float = 1.0 # Temperature scaling for tau
|
29 |
+
topk_mode: str = "attention" # "attention", "gate", "combined", "tau_softmax"
|
30 |
+
guidance_scale: float = 1.0,
|
31 |
+
max_tokens: int = 77 # Maximum number of tokens to process
|
32 |
+
|
33 |
+
|
34 |
+
@dataclass
|
35 |
+
class AdapterOutput:
|
36 |
+
"""Raw output from adapter forward pass"""
|
37 |
+
anchor: torch.Tensor
|
38 |
+
delta: torch.Tensor # Note: already has gate multiplied in!
|
39 |
+
log_sigma: torch.Tensor
|
40 |
+
tau: torch.Tensor
|
41 |
+
g_pred: torch.Tensor
|
42 |
+
gate: torch.Tensor
|
43 |
+
adapter_type: str
|
44 |
+
slice_range: Tuple[int, int]
|
45 |
+
# Add attention weights for top-k
|
46 |
+
attn_c2m: Optional[torch.Tensor] = None
|
47 |
+
attn_m2c: Optional[torch.Tensor] = None
|
48 |
+
|
49 |
+
|
50 |
+
class ConditioningShifter:
|
51 |
+
@staticmethod
|
52 |
+
def extract_encoder_embeddings(
|
53 |
+
encoder_pipe: Dict[str, Any],
|
54 |
+
device: torch.device,
|
55 |
+
shift_config: Optional[ShiftConfig | dict[str, Any]] = None,
|
56 |
+
sampler_cfg: Dict[str, Any] = None
|
57 |
+
) -> torch.Tensor:
|
58 |
+
"""
|
59 |
+
1) Clean prompt of any shunt tokens
|
60 |
+
2) Tokenize + encode via T5/BERT
|
61 |
+
3) Optionally project to sampler_cfg['projection_dims_in']
|
62 |
+
"""
|
63 |
+
# 1) prompt cleanup
|
64 |
+
if isinstance(shift_config, dict):
|
65 |
+
shift_config = ShiftConfig(**shift_config)
|
66 |
+
raw_prompt = shift_config.prompt
|
67 |
+
prompt = raw_prompt#RemoveSpecialTokens.remove_special_tokens(raw_prompt)
|
68 |
+
|
69 |
+
# 2) tokenize & encode
|
70 |
+
tokenizer = encoder_pipe["tokenizer"]
|
71 |
+
model = encoder_pipe["model"]
|
72 |
+
cfg = encoder_pipe["config"]["config"] # your existing mini‐config
|
73 |
+
|
74 |
+
tokens = tokenizer(
|
75 |
+
prompt,
|
76 |
+
return_tensors="pt",
|
77 |
+
padding=cfg.get("padding","max_length"),
|
78 |
+
truncation=True,
|
79 |
+
max_length=cfg.get("max_tokens",cfg.get("max_length", 512)),
|
80 |
+
)
|
81 |
+
input_ids = tokens["input_ids"].to(device)
|
82 |
+
attention_mask = tokens["attention_mask"].to(device)
|
83 |
+
|
84 |
+
with torch.no_grad():
|
85 |
+
model.to(device)
|
86 |
+
mtype = encoder_pipe["config"].get("model_type","")
|
87 |
+
if "t5" in mtype:
|
88 |
+
embeddings = model.encoder(input_ids=input_ids,
|
89 |
+
attention_mask=attention_mask
|
90 |
+
).last_hidden_state
|
91 |
+
elif mtype in ("bert","nomic_bert"):
|
92 |
+
embeddings = model(input_ids=input_ids,
|
93 |
+
attention_mask=attention_mask,
|
94 |
+
return_dict=True
|
95 |
+
).last_hidden_state
|
96 |
+
else:
|
97 |
+
raise ValueError(f"Unsupported encoder type {mtype!r}")
|
98 |
+
model.to("cpu") # free GPU memory
|
99 |
+
|
100 |
+
# 3) optional input‐projection to match CLIP dims
|
101 |
+
if sampler_cfg and sampler_cfg.get("force_projection_in", False):
|
102 |
+
target_dims = sampler_cfg["projection_dims_in"]
|
103 |
+
embeddings = ConditioningShifter._project_embeddings(
|
104 |
+
embeddings, target_dims, sampler_cfg["interpolation_method_in"]
|
105 |
+
)
|
106 |
+
|
107 |
+
return embeddings.to(device)
|
108 |
+
|
109 |
+
|
110 |
+
@staticmethod
|
111 |
+
def _project_embeddings(
|
112 |
+
embeddings: torch.Tensor,
|
113 |
+
target_dim: int,
|
114 |
+
mode: str
|
115 |
+
) -> torch.Tensor:
|
116 |
+
"""
|
117 |
+
Interpolate the last dimension from D→target_dim via F.interpolate,
|
118 |
+
preserving batch & sequence dims.
|
119 |
+
"""
|
120 |
+
B, T, D = embeddings.shape
|
121 |
+
if D == target_dim:
|
122 |
+
return embeddings
|
123 |
+
|
124 |
+
# [B*T, 1, D] → interpolate → [B*T, 1, target_dim] → back to [B,T,target_dim]
|
125 |
+
flat = embeddings.reshape(B*T, 1, D)
|
126 |
+
proj = torch.nn.functional.interpolate(
|
127 |
+
flat.float(),
|
128 |
+
size=target_dim,
|
129 |
+
mode=mode,
|
130 |
+
align_corners=(mode in {"linear","bilinear","trilinear"})
|
131 |
+
)
|
132 |
+
return proj.reshape(B, T, target_dim)
|
133 |
+
|
134 |
+
@staticmethod
|
135 |
+
def run_adapter(adapter_model: ConditionModulationShuntAdapter,
|
136 |
+
encoder_embeddings: torch.Tensor,
|
137 |
+
clip_slice: torch.Tensor,
|
138 |
+
guidance_scale: float,
|
139 |
+
adapter_type: str,
|
140 |
+
slice_range: Tuple[int, int]) -> AdapterOutput:
|
141 |
+
"""Run adapter and package output"""
|
142 |
+
gen_config = {"max_guidance": guidance_scale if guidance_scale > 0 else 1.0}
|
143 |
+
|
144 |
+
#encoder_embeddings, clip_slice = reshape_for_shunt(encoder_embeddings, clip_slice, adapter_model)
|
145 |
+
|
146 |
+
with torch.no_grad():
|
147 |
+
outputs = adapter_model(encoder_embeddings.float(), clip_slice.float(), config=gen_config)
|
148 |
+
|
149 |
+
if isinstance(outputs, tuple) and len(outputs) == 8:
|
150 |
+
anchor, delta, log_sigma, attn_c2m, attn_m2c, tau, g_pred, gate = outputs
|
151 |
+
return AdapterOutput(
|
152 |
+
anchor=anchor,
|
153 |
+
delta=delta, # Already has gate multiplied!
|
154 |
+
log_sigma=log_sigma,
|
155 |
+
tau=tau,
|
156 |
+
g_pred=g_pred,
|
157 |
+
gate=gate,
|
158 |
+
adapter_type=adapter_type,
|
159 |
+
slice_range=slice_range,
|
160 |
+
attn_c2m=attn_c2m,
|
161 |
+
attn_m2c=attn_m2c
|
162 |
+
)
|
163 |
+
else:
|
164 |
+
raise ValueError(f"Unexpected adapter output format: {type(outputs)}")
|
165 |
+
|
166 |
+
@staticmethod
|
167 |
+
def apply_topk_selection(output: AdapterOutput, config: ShiftConfig) -> Tuple[torch.Tensor, torch.Tensor]:
|
168 |
+
"""
|
169 |
+
Apply top-k selection using tau and attention weights.
|
170 |
+
Returns mask and selection scores for CLIP tokens.
|
171 |
+
"""
|
172 |
+
if not config.use_topk:
|
173 |
+
# Return full mask matching gate dimensions
|
174 |
+
return torch.ones_like(output.gate.squeeze(-1)), None
|
175 |
+
|
176 |
+
# Calculate selection scores based on mode
|
177 |
+
if config.topk_mode == "attention":
|
178 |
+
# Use modulation->condition attention (how much each CLIP token attends to encoder)
|
179 |
+
# Sum across encoder dimension to get importance score per CLIP token
|
180 |
+
scores = output.attn_m2c.mean(dim=1).sum(dim=-1) # [batch, seq_clip]
|
181 |
+
elif config.topk_mode == "attention_collaborative":
|
182 |
+
# Use modulation->condition attention (how much each CLIP token attends to encoder)
|
183 |
+
# Sum across encoder dimension to get importance score per CLIP token
|
184 |
+
# compare and normalize using the c2m attention as a soft mask
|
185 |
+
scores = output.attn_m2c.mean(dim=1).sum(dim=-1)
|
186 |
+
c2m_scores = output.attn_c2m.mean(dim=1).sum(dim=-1) # [batch, seq_clip]
|
187 |
+
# soft mask weaken and strengthen scores based on c2m_scores
|
188 |
+
scores = (scores - c2m_scores.min()) / (c2m_scores.max() - c2m_scores.min() + 1e-8)
|
189 |
+
|
190 |
+
|
191 |
+
elif config.topk_mode == "gate":
|
192 |
+
# Use gate values directly (already in CLIP space)
|
193 |
+
scores = output.gate.squeeze(-1) # [batch, seq_clip]
|
194 |
+
|
195 |
+
elif config.topk_mode == "combined":
|
196 |
+
# Combine attention and gate scores
|
197 |
+
attn_score = output.attn_m2c.mean(dim=1).sum(dim=-1) # [batch, seq_clip]
|
198 |
+
gate_score = output.gate.squeeze(-1)
|
199 |
+
|
200 |
+
# Normalize and combine
|
201 |
+
attn_score = (attn_score - attn_score.min()) / (attn_score.max() - attn_score.min() + 1e-8)
|
202 |
+
gate_score = (gate_score - gate_score.min()) / (gate_score.max() - gate_score.min() + 1e-8)
|
203 |
+
|
204 |
+
scores = (attn_score + gate_score) / 2
|
205 |
+
|
206 |
+
elif config.topk_mode == "tau_softmax":
|
207 |
+
# Use tau as temperature for softmax selection
|
208 |
+
attn_score = output.attn_m2c.mean(dim=1).sum(dim=-1) # [batch, seq_clip]
|
209 |
+
|
210 |
+
# Apply tau temperature scaling
|
211 |
+
tau_value = output.tau.mean().item() * config.tau_temperature
|
212 |
+
scores = torch.nn.functional.softmax(attn_score / tau_value, dim=-1)
|
213 |
+
else:
|
214 |
+
scores = output.gate.squeeze(-1)
|
215 |
+
|
216 |
+
# Calculate k
|
217 |
+
k = int(scores.size(-1) * (config.topk_percentage / 100.0))
|
218 |
+
k = max(1, min(k, scores.size(-1)))
|
219 |
+
|
220 |
+
# Get top-k indices
|
221 |
+
topk_values, topk_indices = torch.topk(scores, k, dim=-1)
|
222 |
+
|
223 |
+
# Create sparse mask
|
224 |
+
mask = torch.zeros_like(scores)
|
225 |
+
mask.scatter_(-1, topk_indices, 1.0)
|
226 |
+
|
227 |
+
return mask, scores
|
228 |
+
|
229 |
+
@staticmethod
|
230 |
+
def apply_modifications(clip_slice: torch.Tensor, outputs: List[AdapterOutput],
|
231 |
+
config: ShiftConfig) -> torch.Tensor:
|
232 |
+
"""Apply modifications based on config.pool_method"""
|
233 |
+
torch.manual_seed(config.seed if config.seed >= 0 else torch.randint(0, 2**32, (1,)).item())
|
234 |
+
|
235 |
+
modified = clip_slice.clone()
|
236 |
+
if config.pool_method == "sequential":
|
237 |
+
# Apply each adapter sequentially
|
238 |
+
for output in outputs:
|
239 |
+
modified = ConditioningShifter._apply_single(modified, output, config)
|
240 |
+
return modified
|
241 |
+
|
242 |
+
elif config.pool_method == "weighted_average":
|
243 |
+
# Pool all adapters then apply once
|
244 |
+
if len(outputs) == 1:
|
245 |
+
return ConditioningShifter._apply_single(modified, outputs[0], config)
|
246 |
+
|
247 |
+
pooled = ConditioningShifter._pool_outputs(outputs)
|
248 |
+
return ConditioningShifter._apply_single(clip_slice, pooled, config)
|
249 |
+
|
250 |
+
else:
|
251 |
+
raise ValueError(f"Unknown pool_method: {config.pool_method}")
|
252 |
+
|
253 |
+
@staticmethod
|
254 |
+
def _apply_single(clip_slice: torch.Tensor, output: AdapterOutput,
|
255 |
+
config: ShiftConfig) -> torch.Tensor:
|
256 |
+
"""Apply a single adapter output with optional top-k selection"""
|
257 |
+
|
258 |
+
# Apply top-k selection if enabled
|
259 |
+
topk_mask, scores = ConditioningShifter.apply_topk_selection(output, config)
|
260 |
+
|
261 |
+
# Preprocess (but remember delta already has gate!)
|
262 |
+
delta = output.delta * config.delta_scale + config.delta_mean
|
263 |
+
|
264 |
+
gate_scaled = output.gate * config.gate_probability
|
265 |
+
gate_mask = (gate_scaled > config.gate_threshold).float()
|
266 |
+
gate_masked = gate_scaled * gate_mask
|
267 |
+
|
268 |
+
# Apply top-k mask to gate and delta
|
269 |
+
if config.use_topk:
|
270 |
+
# Expand mask to match dimensions
|
271 |
+
topk_mask_expanded = topk_mask.unsqueeze(-1)
|
272 |
+
gate_masked = gate_masked * topk_mask_expanded
|
273 |
+
delta = delta * topk_mask_expanded
|
274 |
+
|
275 |
+
# Apply strength
|
276 |
+
delta_final = delta
|
277 |
+
|
278 |
+
# Apply based on anchor mode
|
279 |
+
if config.use_anchor:
|
280 |
+
# Blend original with anchor, then add delta
|
281 |
+
blended = clip_slice * (1 - gate_masked) + output.anchor * gate_masked
|
282 |
+
clip_modified = blended + delta_final
|
283 |
+
else:
|
284 |
+
# Simple additive
|
285 |
+
clip_modified = clip_slice + delta_final
|
286 |
+
|
287 |
+
# Apply noise
|
288 |
+
if config.sigma_scale > 0 and config.noise_injection > 0:
|
289 |
+
sigma = torch.exp(output.log_sigma * config.sigma_scale)
|
290 |
+
clip_modified += torch.randn_like(clip_modified) * sigma * config.noise_injection
|
291 |
+
elif config.noise_injection > 0:
|
292 |
+
clip_modified += torch.randn_like(clip_modified) * config.noise_injection
|
293 |
+
|
294 |
+
return clip_modified
|
295 |
+
|
296 |
+
@staticmethod
|
297 |
+
def _pool_outputs(outputs: List[AdapterOutput]) -> AdapterOutput:
|
298 |
+
"""Pool multiple adapter outputs into one"""
|
299 |
+
# Simple weighted average
|
300 |
+
total_weight = len(outputs)
|
301 |
+
|
302 |
+
pooled_anchor = sum(o.anchor for o in outputs) / total_weight
|
303 |
+
pooled_delta = sum(o.delta for o in outputs) / total_weight
|
304 |
+
pooled_log_sigma = sum(o.log_sigma for o in outputs) / total_weight
|
305 |
+
|
306 |
+
# Handle tau with different head counts
|
307 |
+
if all(o.tau is not None for o in outputs):
|
308 |
+
# Take mean across heads for each adapter, then average
|
309 |
+
tau_values = [o.tau.mean().item() for o in outputs]
|
310 |
+
pooled_tau_value = sum(tau_values) / total_weight
|
311 |
+
# Create scalar tensor on same device
|
312 |
+
pooled_tau = torch.tensor(pooled_tau_value, device=outputs[0].tau.device)
|
313 |
+
else:
|
314 |
+
pooled_tau = None
|
315 |
+
|
316 |
+
pooled_g_pred = sum(o.g_pred for o in outputs) / total_weight if outputs[0].g_pred is not None else None
|
317 |
+
pooled_gate = sum(o.gate for o in outputs) / total_weight
|
318 |
+
|
319 |
+
# Pool attention weights if available - handle different head counts
|
320 |
+
pooled_attn_c2m = None
|
321 |
+
pooled_attn_m2c = None
|
322 |
+
if all(o.attn_c2m is not None for o in outputs):
|
323 |
+
# First, average across heads for each adapter to get [batch, seq_c, seq_m]
|
324 |
+
attn_c2m_list = []
|
325 |
+
attn_m2c_list = []
|
326 |
+
|
327 |
+
for o in outputs:
|
328 |
+
# Average across heads dimension
|
329 |
+
attn_c2m_avg = o.attn_c2m.mean(dim=1) # [batch, seq_c, seq_m]
|
330 |
+
attn_m2c_avg = o.attn_m2c.mean(dim=1) # [batch, seq_m, seq_c]
|
331 |
+
attn_c2m_list.append(attn_c2m_avg)
|
332 |
+
attn_m2c_list.append(attn_m2c_avg)
|
333 |
+
|
334 |
+
# Now average across adapters
|
335 |
+
pooled_attn_c2m = sum(attn_c2m_list) / total_weight
|
336 |
+
pooled_attn_m2c = sum(attn_m2c_list) / total_weight
|
337 |
+
|
338 |
+
# Add back a dummy heads dimension for compatibility
|
339 |
+
pooled_attn_c2m = pooled_attn_c2m.unsqueeze(1) # [batch, 1, seq_c, seq_m]
|
340 |
+
pooled_attn_m2c = pooled_attn_m2c.unsqueeze(1) # [batch, 1, seq_m, seq_c]
|
341 |
+
|
342 |
+
return AdapterOutput(
|
343 |
+
anchor=pooled_anchor,
|
344 |
+
delta=pooled_delta,
|
345 |
+
log_sigma=pooled_log_sigma,
|
346 |
+
tau=pooled_tau,
|
347 |
+
g_pred=pooled_g_pred,
|
348 |
+
gate=pooled_gate,
|
349 |
+
adapter_type=outputs[0].adapter_type,
|
350 |
+
slice_range=outputs[0].slice_range,
|
351 |
+
attn_c2m=pooled_attn_c2m,
|
352 |
+
attn_m2c=pooled_attn_m2c
|
353 |
+
)
|
354 |
+
|
355 |
+
@staticmethod
|
356 |
+
def conditioning_set_values(conditioning, values={}, append=False):
|
357 |
+
"""
|
358 |
+
Set values in conditioning based on provided values.
|
359 |
+
Original set values was provided by comfyui node_helpers.py
|
360 |
+
|
361 |
+
"""
|
362 |
+
c = []
|
363 |
+
for t in conditioning:
|
364 |
+
n = [t[0], t[1].copy()]
|
365 |
+
for k in values:
|
366 |
+
val = values[k]
|
367 |
+
if append:
|
368 |
+
old_val = n[1].get(k, None)
|
369 |
+
if old_val is not None:
|
370 |
+
val = old_val + val
|
371 |
+
|
372 |
+
n[1][k] = val
|
373 |
+
c.append(n)
|
374 |
+
|
375 |
+
return
|
376 |
+
|
377 |
+
@staticmethod
|
378 |
+
def conditioning_set_strength(conditioning, cond_strength: float, pool_strength: float = 1.0):
|
379 |
+
"""
|
380 |
+
Set strength in conditioning based on provided strength - we need to manually modify instead of setting values.
|
381 |
+
[ [base_tensor, { "pooled_outputs": pool, ... other dict entries } ], ... ]
|
382 |
+
"""
|
383 |
+
c = []
|
384 |
+
for t in conditioning:
|
385 |
+
base_tensor = t[0].copy()
|
386 |
+
# Set our usage strength, then find out if we have pooled outputs
|
387 |
+
base_tensor *= cond_strength
|
388 |
+
kwarg_dict = t[1].clone() if t[1] is not None else {} # copies the config params for later use
|
389 |
+
|
390 |
+
# lets get and remove the pooled outputs if they exist
|
391 |
+
pooled: Optional[None | torch.Tensor] = kwarg_dict.get("pooled_outputs", None)
|
392 |
+
if pooled is not None:
|
393 |
+
del kwarg_dict["pooled_outputs"]
|
394 |
+
pooled = pooled.clone()
|
395 |
+
# If we have pooled outputs, apply the pooled strength
|
396 |
+
pooled *= pool_strength
|
397 |
+
kwarg_dict["pooled_outputs"] = pooled
|
398 |
+
|
399 |
+
c.append([base_tensor, kwarg_dict])
|
400 |
+
|
401 |
+
|
402 |
+
|