Spaces:
Runtime error
Runtime error
File size: 24,174 Bytes
d3479d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
from typing import Dict, Optional, Any, Union, Tuple
import os
import torch
import torch.nn as nn
import logging
from pathlib import Path
from dataclasses import dataclass
from enum import Enum
from safetensors.torch import load_file
from torch.nn import Module
from transformers import AutoModel, AutoTokenizer, AutoConfig, AutoModelForSeq2SeqLM, BertModel, BertTokenizer, \
PreTrainedTokenizerFast, T5TokenizerFast, T5EncoderModel
from .custom.t5_encoder_with_projection import T5EncoderWithProjection
logger = logging.getLogger(__name__)
# --------------------------------------------------------------------------- #
# Helper for namespaced cache keys
def _make_key(model_type: str, model_id: str) -> str:
"""
Produce a unique key for the internal cache.
Example
-------
>>> _make_key("bert", "bert-base")
'bert:bert-base'
"""
return f"{model_type}:{model_id}"
# Thread-safe registry wrapper
class _SafeDict(dict):
"""A dict protected by a re-entrant lock for thread-safe writes."""
def __init__(self):
super().__init__()
import threading
self._lock = threading.RLock()
def safe_set(self, key, value):
with self._lock:
super().__setitem__(key, value)
def safe_get(self, key, default=None):
with self._lock:
return super().get(key, default)
def safe_del(self, key):
with self._lock:
if key in self:
super().__delitem__(key)
return True
return False
# -------------------------------------------------------------------------------------------------------------------- #
# WARNING: ENABLING THIS TRUST_REMOTE_CODE FLAG WILL ALLOW EXECUTION OF ARBITRARY CODE FROM THE MODEL REPOSITORY.
# USE WITH EXTREME CAUTION, AS IT CAN POTENTIALLY EXECUTE MALICIOUS CODE FROM UNTRUSTED SOURCES.
TRUST_REMOTE_CODE = False # Set to True only if you trust the source of the models you are loading.
# I advise leaving this OFF for any production or sensitive environments, and for any government or enterprise use.
# Ensure you fully trust the model repository and its maintainers and reviewing the code thoroughly.
# You cannot ONLY trust an AI's response to the question of whether it is safe to enable this flag,
# as it may not have the full context of security implications or the specific model's behavior.
# -------------------------------------------------------------------------------------------------------------------- #
# COMFYUI operates within a form of sandbox, but enabling remote code execution can still pose many unseen risks.
# -------------------------------------------------------------------------------------------------------------------- #
class ModelType(Enum):
"""Enum for different model types"""
SHUNT_ADAPTER = "shunt_adapter"
T5_MODEL = "t5_model"
BERT_MODEL = "bert"
NOMIC_BERT_MODEL = "nomic_bert"
GENERIC = "generic"
TOKENIZER = "tokenizer"
@dataclass
class ModelInfo:
"""Container for model information"""
model: nn.Module
model_type: ModelType
config: Dict[str, Any]
device: torch.device
dtype: torch.dtype
metadata: Dict[str, Any] = None
trust_remote_code: bool = TRUST_REMOTE_CODE # Use global setting by default
class ModelManager:
"""
Centralized model loader / cache with thread-safety and namespaced keys.
"""
def __init__(self, cache_dir: Optional[str] = None):
# Thread-safe model cache
self.models: _SafeDict = _SafeDict()
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.cache_dir = self._setup_cache_dir(cache_dir)
# be VERY careful with huggingface keys, remote code execution, and model downloads.
# If you are using private models or need to authenticate, set the HuggingFace API key.
def set_huggingface_key(self, key: str):
"""
Set the HuggingFace API key for model downloads.
This is useful if you have a private model or need to authenticate.
"""
os.environ["HF_TOKEN"] = key
logger.info("HuggingFace API key set successfully.")
def get_huggingface_key(self) -> Optional[str]:
"""
Get the HuggingFace API key if set.
This is useful for debugging or checking if authentication is needed.
"""
return os.environ.get("HF_TOKEN")
def set_huggingface_cache_directory(self, directory: str):
"""
Set the cache directory for HuggingFace model downloads.
This is useful if you want to change the cache location.
This will not move your models, it only sets the new default directory.
"""
os.environ["HF_HOME"] = directory
logger.info(f"HuggingFace default directory set to: {directory}")
def get_huggingface_cache_directory(self) -> Optional[str]:
"""
Get the cache directory for HuggingFace model downloads.
This is useful for debugging or checking where models are stored.
"""
return os.environ.get("HF_HOME", str(self.cache_dir))
# --------------------------------------------------------------------- #
# Internal helpers
def _store(self, key: str, info: "ModelInfo") -> None:
"""Thread-safe insertion into the model cache."""
self.models.safe_set(key, info)
def _setup_cache_dir(self, cache_dir: Optional[str]) -> Path:
"""Setup and validate cache directory"""
if cache_dir:
cache_path = Path(cache_dir)
else:
# Use default HuggingFace cache location
cache_path = Path.home() / ".cache" / "huggingface" / "transformers"
cache_path.mkdir(parents=True, exist_ok=True)
logger.info(f"Using cache directory: {cache_path}")
return cache_path
def get_model(self, key: str) -> Optional["ModelInfo"]:
"""Retrieve a model by its namespaced key."""
return self.models.safe_get(key)
def is_loaded(self, key: str) -> bool:
"""Return True if the namespaced key is present in the cache."""
return self.models.safe_get(key) is not None
def move_model(
self,
namespaced_key: str,
*,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> Optional[nn.Module]:
"""
Convert device/dtype of a cached model and return the updated object.
"""
model = self._maybe_convert_dtype(namespaced_key, dtype, device)
if model is None:
logger.warning("move_model: %s not found", namespaced_key)
return model
def load_tokenizer(
self,
id: str,
tokenizer_name_or_path: str,
target_output_device: Optional[torch.device] = None,
force_reload: bool = False,
trust_remote_code: Optional[bool] = None,
) -> Optional[tuple[PreTrainedTokenizerFast, dict[str, Any]]]:
"""Load or fetch from cache a Hugging-Face tokenizer."""
key = _make_key("tokenizer", id)
if not force_reload and self.is_loaded(key):
model_info = self.get_model(key)
return model_info.model, model_info.metadata
try:
trust_remote_code = (
trust_remote_code if trust_remote_code is not None else TRUST_REMOTE_CODE
)
tok = AutoTokenizer.from_pretrained(
tokenizer_name_or_path, trust_remote_code=trust_remote_code
)
self._store(
key,
ModelInfo(
model=tok,
model_type=ModelType.TOKENIZER,
config={"tokenizer_name": tokenizer_name_or_path},
device=target_output_device or torch.device("cpu"),
dtype=torch.float32,
metadata={"source": "huggingface", "trust_remote_code": trust_remote_code},
),
)
logger.info("Loaded tokenizer %s", key)
return tok, self.get_model(key).metadata
except Exception:
logger.exception("Failed to load tokenizer %s", id)
return None
def load_shunt_adapter(
self,
adapter_id: str,
config: Dict[str, Any],
path: Optional[str] = None,
repo_id: Optional[str] = None,
filename: Optional[str] = None,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
force_reload: bool = False
) -> Optional[nn.Module]:
"""
Load a shunt adapter from local path or HuggingFace.
Args:
adapter_id: Unique identifier for the adapter
config: Configuration dictionary for the adapter
path: Local path to the adapter file
repo_id: HuggingFace repository ID
filename: Filename in the HuggingFace repository
device: Target device
dtype: Target dtype
force_reload: Force reload even if cached
Returns:
Loaded adapter model or None if failed
"""
if not force_reload and self.is_loaded(adapter_id):
logger.info(f"Using cached adapter: {adapter_id}")
return self._maybe_convert_dtype(adapter_id, dtype, device)
try:
# Import here to avoid circular imports
from two_stream_shunt_adapter import ConditionModulationShuntAdapter
# Determine file location
file_path = self._resolve_file_path(path, repo_id, filename)
if not file_path:
raise FileNotFoundError(f"Could not find adapter file for {adapter_id}")
# Initialize adapter
# if the filename ends with t5-vit-l-14-dual_shunt_booru_13_000_000.safetensors we set attention heads to 4, else we set to 12
logger.info(f"Loading adapter {adapter_id} from {file_path}")
adapter = ConditionModulationShuntAdapter(config=config)
logger.info(f"Initialized adapter {adapter_id} with config: {config}")
# Load weights
state_dict = load_file(file_path)
logger.info(f"Loaded state_dict for adapter {adapter_id} from {file_path}")
adapter.load_state_dict(state_dict, strict=False)
logger.info(f"Adapter {adapter_id} state_dict loaded successfully")
# Move to device and dtype
device = device or self.device
dtype = dtype or torch.float32
logger.info(f"Moving adapter {adapter_id} to device: {device}, dtype: {dtype}")
adapter = adapter.to(device=device, dtype=dtype)
logger.info(f"Adapter {adapter_id} moved to device and dtype successfully")
# Cache the model
self.models[adapter_id] = ModelInfo(
model=adapter,
model_type=ModelType.SHUNT_ADAPTER,
config=config,
device=device,
dtype=dtype,
metadata={"file_path": str(file_path)}
)
logger.info(f"Adapter {adapter_id} cached successfully")
logger.info(f"Successfully loaded adapter: {adapter_id}")
return adapter
except Exception as e:
logger.error(f"Failed to load adapter {adapter_id} from {path or repo_id}/{filename}: {e}")
logger.debug(f"Traceback: {e.__traceback__}")
return None
def load_encoder_model(self,
model_type: str, # use this to see if it's compatible with the current model manager
model_id: str,
model_name_or_path: str,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
force_reload: bool = False,
trust_remote_code: Optional[bool] = None, # Overrides the global TRUST_REMOTE_CODE setting.
config: Optional[Dict[str, Any]] = None # Additional configuration for the model
) -> Optional[nn.Module]:
"""
Load an encoder model (e.g., BERT, T5) and return it.
Args:
model_type: Type of the model (e.g., "bert", "t5")
model_id: Unique identifier for the model
model_name_or_path: Model name or path
device: Target device
dtype: Target dtype
force_reload: Force reload even if cached
Returns:
Loaded model or None if failed
"""
if model_type == "bert":
return self.load_bert_model(model_id, model_name_or_path, device, dtype, force_reload, trust_remote_code)
elif model_type == "nomic_bert":
# Nomic BERT is a specific variant of BERT, so we can use the same loading function
return self.load_bert_model(model_id, model_name_or_path, device, dtype, force_reload, trust_remote_code)
elif "t5" in model_type:
return self.load_t5_model(model_id, model_name_or_path, device, dtype, force_reload, trust_remote_code, config)
else:
logger.error(f"Unsupported model type: {model_type}")
return None
def load_bert_model(
self,
model_id: str,
model_name_or_path: str,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
force_reload: bool = False,
trust_remote_code: Optional[bool] = None # Overrides the global TRUST_REMOTE_CODE setting.
) -> Optional[Tuple[nn.Module, Any]]:
"""
Load a BERT model and tokenizer.
Returns:
Tuple of (model, tokenizer) or None if failed
"""
if not force_reload and self.is_loaded(model_id):
logger.info(f"Using cached BERT model: {model_id}")
model_info = self.get_model(model_id)
return model_info.model, model_info.metadata.get("tokenizer")
try:
device = device or self.device
dtype = dtype or torch.float32
config = AutoConfig.from_pretrained(
model_name_or_path,
trust_remote_code=trust_remote_code if trust_remote_code is not None else TRUST_REMOTE_CODE # Use the global flag for remote code execution
)
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(
model_name_or_path,
config=config,
use_special_tokens=True, # Ensure special tokens are used
trust_remote_code=trust_remote_code if trust_remote_code is not None else TRUST_REMOTE_CODE # Use the global flag for remote code execution
)
model = AutoModel.from_pretrained(
model_name_or_path,
config=config,
torch_dtype=dtype,
trust_remote_code=trust_remote_code if trust_remote_code is not None else TRUST_REMOTE_CODE # Use the global flag for remote code execution
).to(device)
# Cache the model
self._store(_make_key("bert", model_id), ModelInfo(
model=model,
model_type=ModelType.BERT_MODEL,
config={"model_name": model_name_or_path},
device=device,
dtype=dtype,
metadata={"tokenizer": tokenizer},
trust_remote_code=trust_remote_code if trust_remote_code is not None else TRUST_REMOTE_CODE
))
logger.info(f"Successfully loaded BERT model: {model_id}")
return model, tokenizer
except Exception as e:
logger.error(f"Failed to load BERT model {model_id}: {e}")
return None
def load_t5_model(
self,
model_id: str,
model_name_or_path: str,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
force_reload: bool = False,
override_remote_code: Optional[bool] = None, # Overrides the global TRUST_REMOTE_CODE setting.
config: Optional[Dict[str, Any]] = None # Additional configuration for the model
) -> Optional[Tuple[nn.Module, Any]]:
"""
Load a T5 model and tokenizer.
Returns:
Tuple of (model, tokenizer) or None if failed
"""
if not force_reload and self.is_loaded(model_id):
logger.info(f"Using cached T5 model: {model_id}")
model_info = self.get_model(model_id)
return model_info.model, model_info.metadata.get("tokenizer")
try:
device = device or self.device
dtype = dtype or torch.float32
trust_remote_code = override_remote_code if override_remote_code is not None else TRUST_REMOTE_CODE
# Load tokenizer and model
if config.get("type", "t5") == "t5":
tokenizer = AutoTokenizer.from_pretrained(
"google/flan-t5-base",
trust_remote_code=trust_remote_code # Use the global flag for remote code execution
)
elif config.get("type", "t5") == "t5_unchained":
tokenizer = T5TokenizerFast.from_pretrained(
"AbstractPhil/t5xxl-unchained",
trust_remote_code=trust_remote_code # Use the global flag for remote code execution
)
else:
tokenizer = T5TokenizerFast.from_pretrained(
"google/flan-t5-base",
trust_remote_code=trust_remote_code # Use the global flag for remote code execution
)
if config.get("type", "t5") == "t5":
logger.info(f"Loading T5ForConditionalGeneration model from {model_name_or_path}")
model = AutoModelForSeq2SeqLM.from_pretrained(
model_name_or_path,
torch_dtype=dtype,
trust_remote_code=trust_remote_code # Use the global flag for remote code execution
).to(device)
elif config.get("type", "t5") == "t5_encoder_with_projection":
# Load T5EncoderModel with projection layer
logger.info(f"Loading T5EncoderWithProjection model from {model_name_or_path}")
model = T5EncoderWithProjection.from_pretrained(
model_name_or_path,
torch_dtype=dtype,
trust_remote_code=trust_remote_code # Use the global flag for remote code execution
).to(device)
else:
# Load standard T5 model
logger.info(f"Loading T5EncoderModel from {model_name_or_path}")
model = AutoModel.from_pretrained(
model_name_or_path,
torch_dtype=dtype,
trust_remote_code=trust_remote_code # Use the global flag for remote code execution
).to(device)
# Cache the model
self._store(_make_key("t5", model_id), ModelInfo(
model=model,
model_type=ModelType.T5_MODEL,
config={"model_name": model_name_or_path},
device=device,
dtype=dtype,
metadata={"tokenizer": tokenizer}
))
logger.info(f"Successfully loaded T5 model: {model_id}")
return model, tokenizer
except Exception as e:
logger.error(f"Failed to load T5 model {model_id}: {e}")
return None
def unload_model(self, model_id: str) -> bool:
"""
Unload a model to free memory.
Returns:
True if successfully unloaded, False otherwise
"""
if model_id in self.models:
try:
# Move to CPU first to free GPU memory
model_info = self.models[model_id]
model_info.model.cpu()
# Delete the model
del self.models[model_id]
# Force garbage collection
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.info(f"Successfully unloaded model: {model_id}")
return True
except Exception as e:
logger.error(f"Failed to unload model {model_id}: {e}")
return False
else:
logger.warning(f"Model {model_id} not found in cache")
return False
def list_models(self) -> Dict[str, Dict[str, Any]]:
"""List all loaded models with their information"""
return {
model_id: {
"type": info.model_type.value,
"device": str(info.device),
"dtype": str(info.dtype),
"config": info.config
}
for model_id, info in self.models.items()
}
def clear_all(self):
"""Clear all loaded models"""
model_ids = list(self.models.keys())
for model_id in model_ids:
self.unload_model(model_id)
logger.info("All models cleared from memory")
def _resolve_file_path(
self,
local_path: Optional[str],
repo_id: Optional[str],
filename: Optional[str]
) -> Optional[Path]:
"""Resolve file path from local or HuggingFace"""
# Try local path first
if local_path and os.path.exists(local_path):
return Path(local_path)
# Try HuggingFace
if repo_id and filename:
try:
from huggingface_hub import hf_hub_download
file_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
cache_dir=str(self.cache_dir),
repo_type="model"
)
return Path(file_path)
except Exception as e:
logger.error(f"Failed to download from HuggingFace: {e}")
return None
def _maybe_convert_dtype(
self,
model_id: str,
target_dtype: Optional[torch.dtype],
target_device: Optional[torch.device]
) -> Optional[nn.Module]:
"""Convert model dtype/device if needed"""
model_info = self.get_model(model_id)
if not model_info:
return None
model = model_info.model
changed = False
# Check dtype conversion
if target_dtype and model_info.dtype != target_dtype:
try:
model = model.to(dtype=target_dtype)
model_info.dtype = target_dtype
changed = True
logger.info(f"Converted {model_id} to dtype: {target_dtype}")
except Exception as e:
logger.error(f"Failed to convert dtype for {model_id}: {e}")
# Check device conversion
if target_device and model_info.device != target_device:
try:
model = model.to(device=target_device)
model_info.device = target_device
changed = True
logger.info(f"Moved {model_id} to device: {target_device}")
except Exception as e:
logger.error(f"Failed to move {model_id} to device: {e}")
if changed:
model_info.model = model
return model
def __del__(self):
"""Cleanup on deletion"""
self.clear_all()
# Global instance (singleton pattern)
_global_model_manager: Optional[ModelManager] = None
def get_model_manager(cache_dir: Optional[str] = None) -> ModelManager:
"""Get or create the global model manager instance"""
global _global_model_manager
if _global_model_manager is None:
_global_model_manager = ModelManager(cache_dir=cache_dir)
return _global_model_manager |