Spaces:
Runtime error
Runtime error
File size: 11,537 Bytes
19e2e87 d3479d5 e543e33 403ae01 d3479d5 ca066a9 d3479d5 ca066a9 e543e33 620a643 19e2e87 d3479d5 e543e33 d3479d5 19e2e87 ca066a9 d3479d5 ca066a9 1e5ce4d 19e2e87 d3479d5 1e5ce4d d3479d5 e543e33 d3479d5 e543e33 d3479d5 e543e33 19e2e87 e543e33 d3479d5 19e2e87 5759aab ca066a9 e543e33 b6b9cb1 e543e33 19e2e87 e543e33 19e2e87 e543e33 19e2e87 e543e33 b6b9cb1 e543e33 1e5ce4d 19e2e87 e543e33 19e2e87 d3479d5 e543e33 1e5ce4d d3479d5 19e2e87 e543e33 d3479d5 e543e33 19e2e87 d3479d5 19e2e87 e543e33 d3479d5 e543e33 535b292 d3479d5 535b292 19e2e87 535b292 19e2e87 d3479d5 535b292 19e2e87 d3479d5 535b292 19e2e87 535b292 d3479d5 19e2e87 535b292 19e2e87 d3479d5 19e2e87 d3479d5 535b292 5759aab d3479d5 e543e33 d3479d5 c22af2e e543e33 19e2e87 d3479d5 19e2e87 d3479d5 19e2e87 d3479d5 e543e33 d3479d5 5759aab e543e33 5759aab e543e33 d3479d5 e543e33 d3479d5 e543e33 19e2e87 e543e33 1e5ce4d 19e2e87 d3479d5 1e5ce4d 19e2e87 e543e33 19e2e87 e543e33 5759aab 19e2e87 e543e33 19e2e87 d3479d5 19e2e87 5759aab 403ae01 e543e33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
# app.py ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
import io, warnings, numpy as np, matplotlib.pyplot as plt
from typing import Dict, List, Optional
from PIL import Image
from pathlib import Path
import gradio as gr
import torch
import torch.nn.functional as F
from transformers import T5Tokenizer, T5EncoderModel
from diffusers import StableDiffusionXLPipeline, DDIMScheduler, EulerDiscreteScheduler, DPMSolverMultistepScheduler
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from two_stream_shunt_adapter import TwoStreamShuntAdapter
from conditioning_shifter import ConditioningShifter, ShiftConfig, AdapterOutput
from configs import ShuntUtil
warnings.filterwarnings("ignore")
# βββ GLOBALS βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
dtype = torch.float16
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
_t5_tok: Optional[T5Tokenizer] = None
_t5_mod: Optional[T5EncoderModel] = None
_pipe: Optional[StableDiffusionXLPipeline] = None
SCHEDULERS = {
"DPM++ 2M": DPMSolverMultistepScheduler,
"DDIM": DDIMScheduler,
"Euler": EulerDiscreteScheduler,
}
clip_l_shunts = ShuntUtil.get_shunts_by_clip_type("clip_l")
clip_g_shunts = ShuntUtil.get_shunts_by_clip_type("clip_g")
clip_l_opts = ["None"] + [s.name for s in clip_l_shunts]
clip_g_opts = ["None"] + [s.name for s in clip_g_shunts]
# βββ INIT βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def _init_t5():
global _t5_tok, _t5_mod
if _t5_tok is None:
_t5_tok = T5Tokenizer.from_pretrained("google/flan-t5-base")
_t5_mod = T5EncoderModel.from_pretrained("google/flan-t5-base").to(device).eval()
def _init_pipe():
global _pipe
if _pipe is None:
_pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=dtype, variant="fp16", use_safetensors=True
).to(device)
_pipe.enable_xformers_memory_efficient_attention()
# βββ UTILITY ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def load_adapter_by_name(name: str, device: torch.device) -> TwoStreamShuntAdapter:
shunt = ShuntUtil.get_shunt_by_name(name)
assert shunt, f"Shunt '{name}' not found."
path = hf_hub_download(repo_id=shunt.repo, filename=shunt.file)
model = TwoStreamShuntAdapter(shunt.config).eval()
model.load_state_dict(load_file(path))
return model.to(device)
def plot_heat(mat: torch.Tensor | np.ndarray, title: str) -> np.ndarray:
if isinstance(mat, torch.Tensor):
mat = mat.detach().cpu().numpy()
if mat.ndim == 1:
mat = mat[None, :]
elif mat.ndim >= 3:
mat = mat.mean(axis=0)
plt.figure(figsize=(7, 3.3), dpi=110)
plt.imshow(mat, aspect="auto", cmap="RdBu_r", origin="upper")
plt.title(title, fontsize=10)
plt.colorbar(shrink=0.7)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight")
plt.close(); buf.seek(0)
return np.array(Image.open(buf))
def encode_prompt_xl(pipe, prompt: str, negative: str) -> Dict[str, torch.Tensor]:
tok_l = pipe.tokenizer(prompt, max_length=77, truncation=True, padding="max_length", return_tensors="pt").input_ids.to(device)
tok_g = pipe.tokenizer_2(prompt, max_length=77, truncation=True, padding="max_length", return_tensors="pt").input_ids.to(device)
ntok_l = pipe.tokenizer(negative, max_length=77, truncation=True, padding="max_length", return_tensors="pt").input_ids.to(device)
ntok_g = pipe.tokenizer_2(negative, max_length=77, truncation=True, padding="max_length", return_tensors="pt").input_ids.to(device)
with torch.no_grad():
clip_l = pipe.text_encoder(tok_l)[0]
neg_clip_l = pipe.text_encoder(ntok_l)[0]
g_out = pipe.text_encoder_2(tok_g, output_hidden_states=False)
clip_g, pl = g_out[1], g_out[0]
ng_out = pipe.text_encoder_2(ntok_g, output_hidden_states=False)
neg_clip_g, npl = ng_out[1], ng_out[0]
return {"clip_l": clip_l, "clip_g": clip_g, "neg_l": neg_clip_l, "neg_g": neg_clip_g, "pooled": pl, "neg_pooled": npl}
# βββ INFERENCE βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def infer(prompt: str, negative_prompt: str,
adapter_l_name: str, adapter_g_name: str,
strength: float, delta_scale: float, sigma_scale: float,
gpred_scale: float, noise: float, gate_prob: float, use_anchor: bool,
steps: int, cfg_scale: float, scheduler_name: str,
width: int, height: int, seed: int):
torch.cuda.empty_cache()
_init_t5(); _init_pipe()
if scheduler_name in SCHEDULERS:
_pipe.scheduler = SCHEDULERS[scheduler_name].from_config(_pipe.scheduler.config)
generator = (torch.Generator(device=device).manual_seed(seed) if seed != -1 else None)
cfg_shift = ShiftConfig(
prompt=prompt,
seed=seed,
strength=strength,
delta_scale=delta_scale,
sigma_scale=sigma_scale,
gate_probability=gate_prob,
noise_injection=noise,
use_anchor=use_anchor,
guidance_scale=gpred_scale,
)
t5_seq = ConditioningShifter.extract_encoder_embeddings(
{"tokenizer": _t5_tok, "model": _t5_mod, "config": {"config": {}}},
device, cfg_shift
)
embeds = encode_prompt_xl(_pipe, prompt, negative_prompt)
outputs: List[AdapterOutput] = []
if adapter_l_name and adapter_l_name != "None":
ada_l = load_adapter_by_name(adapter_l_name, device)
outputs.append(ConditioningShifter.run_adapter(
ada_l, t5_seq, embeds["clip_l"],
cfg_shift.guidance_scale, "clip_l", (0, 768)))
if adapter_g_name and adapter_g_name != "None":
ada_g = load_adapter_by_name(adapter_g_name, device)
outputs.append(ConditioningShifter.run_adapter(
ada_g, t5_seq, embeds["clip_g"],
cfg_shift.guidance_scale, "clip_g", (768, 2048)))
clip_l_mod, clip_g_mod = embeds["clip_l"], embeds["clip_g"]
delta_viz = {"clip_l": torch.zeros_like(clip_l_mod), "clip_g": torch.zeros_like(clip_g_mod)}
gate_viz = {"clip_l": torch.zeros_like(clip_l_mod[..., :1]), "clip_g": torch.zeros_like(clip_g_mod[..., :1])}
for out in outputs:
target = clip_l_mod if out.adapter_type == "clip_l" else clip_g_mod
mod = ConditioningShifter.apply_modifications(target, [out], cfg_shift)
if out.adapter_type == "clip_l": clip_l_mod = mod
else: clip_g_mod = mod
delta_viz[out.adapter_type] = out.delta.detach()
gate_viz[out.adapter_type] = out.gate.detach()
prompt_embeds = torch.cat([clip_l_mod, clip_g_mod], dim=-1)
neg_embeds = torch.cat([embeds["neg_l"], embeds["neg_g"]], dim=-1)
image = _pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=neg_embeds,
pooled_prompt_embeds=embeds["pooled"],
negative_pooled_prompt_embeds=embeds["neg_pooled"],
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width, height=height, generator=generator
).images[0]
delta_l_img = plot_heat(delta_viz["clip_l"].squeeze(), "Ξ CLIP-L")
gate_l_img = plot_heat(gate_viz["clip_l"].squeeze().mean(-1, keepdims=True), "Gate L")
delta_g_img = plot_heat(delta_viz["clip_g"].squeeze(), "Ξ CLIP-G")
gate_g_img = plot_heat(gate_viz["clip_g"].squeeze().mean(-1, keepdims=True), "Gate G")
stats_l = (f"ΟΜ_L = {outputs[0].tau.mean().item():.3f}" if outputs and outputs[0].adapter_type == "clip_l" else "-")
stats_g = (f"ΟΜ_G = {outputs[-1].tau.mean().item():.3f}" if len(outputs) > 1 and outputs[-1].adapter_type == "clip_g" else "-")
return image, delta_l_img, gate_l_img, delta_g_img, gate_g_img, stats_l, stats_g
# βββ GRADIO UI βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def create_interface():
with gr.Blocks(title="SDXL Dual-Shunt Tester", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π§ SDXL Dual-Shunt Tester")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Prompts")
prompt = gr.Textbox(label="Prompt", lines=3)
negative = gr.Textbox(label="Negative", lines=2)
gr.Markdown("### Adapters")
adapter_l = gr.Dropdown(clip_l_opts, value=clip_l_opts[1], label="CLIP-L Adapter")
adapter_g = gr.Dropdown(clip_g_opts, value=clip_g_opts[1], label="CLIP-G Adapter")
gr.Markdown("### Adapter Controls")
strength = gr.Slider(0, 10, 4.0, 0.05, label="Strength")
delta_scale = gr.Slider(-15, 15, 0.2, 0.1, label="Ξ scale")
sigma_scale = gr.Slider(0, 15, 0.1, 0.1, label="Ο scale")
gpred_scale = gr.Slider(0, 20, 2.0, 0.05, label="Guidance scale")
noise = gr.Slider(0, 1, 0.55, 0.01, label="Extra noise")
gate_prob = gr.Slider(0, 1, 0.27, 0.01, label="Gate prob")
use_anchor = gr.Checkbox(True, label="Use anchor mix")
gr.Markdown("### Generation")
with gr.Row():
steps = gr.Slider(1, 50, 20, 1, label="Steps")
cfg_scale = gr.Slider(1, 15, 7.5, 0.1, label="CFG")
scheduler = gr.Dropdown(list(SCHEDULERS.keys()), value="DPM++ 2M", label="Scheduler")
with gr.Row():
width = gr.Slider(512, 1536, 1024, 64, label="Width")
height = gr.Slider(512, 1536, 1024, 64, label="Height")
seed = gr.Number(-1, label="Seed (-1 β random)", precision=0)
run_btn = gr.Button("π Generate", variant="primary")
with gr.Column(scale=1):
out_img = gr.Image(label="Result", height=400)
gr.Markdown("### Diagnostics")
delta_l = gr.Image(label="Ξ L", height=180)
gate_l = gr.Image(label="Gate L", height=180)
delta_g = gr.Image(label="Ξ G", height=180)
gate_g = gr.Image(label="Gate G", height=180)
stats_l = gr.Textbox(label="Stats L", interactive=False)
stats_g = gr.Textbox(label="Stats G", interactive=False)
run_btn.click(
fn=infer,
inputs=[prompt, negative, adapter_l, adapter_g, strength, delta_scale,
sigma_scale, gpred_scale, noise, gate_prob, use_anchor, steps,
cfg_scale, scheduler, width, height, seed],
outputs=[out_img, delta_l, gate_l, delta_g, gate_g, stats_l, stats_g]
)
return demo
if __name__ == "__main__":
create_interface().launch()
|