Abhi0028 commited on
Commit
178f86d
·
verified ·
1 Parent(s): 0dd21a5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -33
app.py CHANGED
@@ -1,43 +1,30 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
27
 
28
- response = ""
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
42
 
43
  """
 
1
  import gradio as gr
2
+ from fastapi import FastAPI
3
+ from pydantic import BaseModel
4
+ from transformers import AutoTokenizer, AutoModelForCausalLM
5
+ import torch
6
 
7
+ # Load model and tokenizer
8
+ tokenizer = AutoTokenizer.from_pretrained("cognitivecomputations/Dolphin3.0-Mistral-24B")
9
+ model = AutoModelForCausalLM.from_pretrained("cognitivecomputations/Dolphin3.0-Mistral-24B", torch_dtype=torch.float16).cuda()
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
+ # FastAPI app
12
+ app = FastAPI()
 
 
 
13
 
14
+ # Request Body
15
+ class InputText(BaseModel):
16
+ prompt: str
17
+ max_length: int = 100
18
 
19
+ @app.post("/generate")
20
+ async def generate_text(input_data: InputText):
21
+ inputs = tokenizer(input_data.prompt, return_tensors="pt").to("cuda")
22
+ output = model.generate(**inputs, max_length=input_data.max_length)
23
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
24
+ return {"response": generated_text}
25
 
26
+ # Run the server using: uvicorn app:app --host 0.0.0.0 --port 8000
 
 
 
 
 
 
 
27
 
 
 
28
 
29
 
30
  """