import json
import os
import pickle
import re
from datetime import datetime, timedelta
from io import BytesIO
from pathlib import Path
from typing import List
import requests
from cachetools import TTLCache
from langchain.schema import Document
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.messages import SystemMessage, HumanMessage, AIMessageChunk
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import ToolNode, tools_condition
from langchain_core.tools import tool
from dotenv import load_dotenv
load_dotenv()
# ----------------------------------------------------------
# 0. Constants
# ----------------------------------------------------------
JSONL_PATH = Path("metadata.jsonl")
FAISS_CACHE = Path("faiss_index.pkl")
EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"
RETRIEVER_K = 5
CACHE_TTL = 600
CACHE = TTLCache(maxsize=256, ttl=CACHE_TTL)
# ----------------------------------------------------------
# 1. Build / load FAISS retriever
# ----------------------------------------------------------
embeddings = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
if FAISS_CACHE.exists():
with open(FAISS_CACHE, "rb") as f:
vector_store = pickle.load(f)
else:
if not JSONL_PATH.exists():
raise FileNotFoundError("metadata.jsonl not found")
docs = []
with open(JSONL_PATH, "rt", encoding="utf-8") as f:
for line in f:
rec = json.loads(line)
content = f"Question: {rec['Question']}\n\nFinal answer: {rec['Final answer']}"
docs.append(Document(page_content=content, metadata={"source": rec["task_id"]}))
vector_store = FAISS.from_documents(docs, embeddings)
with open(FAISS_CACHE, "wb") as f:
pickle.dump(vector_store, f)
retriever = vector_store.as_retriever(search_kwargs={"k": RETRIEVER_K})
# ----------------------------------------------------------
# 2. Caching helper
# ----------------------------------------------------------
def cached_get(key: str, fetch_fn):
if key in CACHE:
return CACHE[key]
val = fetch_fn()
CACHE[key] = val
return val
# ----------------------------------------------------------
# 3. Tools
# ----------------------------------------------------------
@tool
def python_repl(code: str) -> str:
"""Execute Python code and return stdout/stderr."""
import subprocess, textwrap
code = textwrap.dedent(code).strip()
try:
result = subprocess.run(
["python", "-c", code],
capture_output=True,
text=True,
timeout=5,
)
return result.stdout if not result.stderr else f"STDOUT:\n{result.stdout}\nSTDERR:\n{result.stderr}"
except subprocess.TimeoutExpired:
return "Execution timed out (>5s)."
@tool
def describe_image(image_source: str) -> str:
"""Describe an image from local path or URL with Gemini vision."""
import base64
from PIL import Image
if image_source.startswith("http"):
img = Image.open(BytesIO(requests.get(image_source, timeout=10).content))
else:
img = Image.open(image_source)
buffered = BytesIO()
img.convert("RGB").save(buffered, format="JPEG")
b64 = base64.b64encode(buffered.getvalue()).decode()
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
msg = HumanMessage(
content=[
{"type": "text", "text": "Describe this image in detail."},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{b64}"}},
]
)
return llm.invoke([msg]).content
@tool
def web_search(query: str) -> str:
"""Smart web search with 3 keyword variants, cached."""
from langchain_community.tools.tavily_search import TavilySearchResults
keywords = [query, query.replace(" ", " OR "), f'"{query}"']
seen = set()
results = []
for kw in keywords:
key = f"web:{kw}"
snippets = cached_get(
key,
lambda: TavilySearchResults(max_results=3, include_raw_content=True).invoke(kw),
)
for s in snippets:
if s["url"] not in seen:
seen.add(s["url"])
results.append(s["content"][:2000])
if len(results) >= 5:
break
return "\n\n---\n\n".join(results)
@tool
def wiki_search(query: str) -> str:
from langchain_community.document_loaders import WikipediaLoader
key = f"wiki:{query}"
docs = cached_get(
key,
lambda: WikipediaLoader(query=query, load_max_docs=2).load(),
)
return "\n\n---\n\n".join(
f'\n{d.page_content}\n'
for d in docs
)
@tool
def arxiv_search(query: str) -> str:
from langchain_community.document_loaders import ArxivLoader
key = f"arxiv:{query}"
docs = cached_get(
key,
lambda: ArxivLoader(query=query, load_max_docs=2).load(),
)
return "\n\n---\n\n".join(
f'\n{d.page_content[:2000]}...\n'
for d in docs
)
# ----------------------------------------------------------
# 4. System prompt
# ----------------------------------------------------------
SYSTEM_PROMPT = (
"""You are a helpful assistant tasked with answering questions using a set of tools.
Your final answer must strictly follow this format:
FINAL ANSWER: [ANSWER]
Only write the answer in that exact format. Do not explain anything. Do not include any other text.
If you are provided with a similar question and its final answer, and the current question is **exactly the same**, then simply return the same final answer without using any tools.
Only use tools if the current question is different from the similar one.
Examples:
- FINAL ANSWER: FunkMonk
- FINAL ANSWER: Paris
- FINAL ANSWER: 128
If you do not follow this format exactly, your response will be considered incorrect.
"""
)
# ----------------------------------------------------------
# 5. Manual LangGraph construction
# ----------------------------------------------------------
tools_list = [python_repl, describe_image, web_search, wiki_search, arxiv_search]
# retriever tool
from langchain.tools.retriever import create_retriever_tool
tools_list.append(
create_retriever_tool(
retriever=retriever,
name="retrieve_examples",
description="Retrieve up to 5 solved questions similar to the user query.",
)
)
# ----------------------------------------------------------
# provider switcher
# ----------------------------------------------------------
def build_llm(provider: str = "groq"):
if provider == "google":
return ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
return ChatGroq(model="llama-3.3-70b-versatile", temperature=0)
elif provider == "huggingface":
return ChatHuggingFace(
llm=HuggingFaceEndpoint(
repo_id="Qwen/Qwen2.5-Coder-32B-Instruct",
temperature=0,
)
)
else:
raise ValueError("provider must be 'google', 'groq', or 'huggingface'")
llm = build_llm("google") # or "groq", "huggingface"
llm_with_tools = llm.bind_tools(tools_list)
def assistant(state: MessagesState):
"""LLM node that can call tools."""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
def retriever_node(state: MessagesState):
"""First node: fetch examples and prepend them."""
user_query = state["messages"][-1].content
docs = retriever.invoke(user_query)
if docs:
example_text = "\n\n---\n\n".join(d.page_content for d in docs)
example_msg = HumanMessage(
content=f"Here are {len(docs)} similar solved examples:\n\n{example_text}"
)
return {"messages": [SYSTEM_PROMPT] + state["messages"] + [example_msg]}
return {"messages": [SYSTEM_PROMPT] + state["messages"]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever_node)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools_list))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
agent = builder.compile()
# ----------------------------------------------------------
# 6. Quick streaming test
# ----------------------------------------------------------
if __name__ == "__main__":
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
print("Agent thinking …")
for chunk in agent.stream({"messages": [("user", question)]}, stream_mode="values"):
last = chunk["messages"][-1]
if hasattr(last, "content"):
print(last.content, end="", flush=True)