Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
agent.py
|
3 |
|
4 |
This file defines the core logic for a sophisticated AI agent using LangGraph.
|
5 |
-
This version
|
6 |
"""
|
7 |
|
8 |
# ----------------------------------------------------------
|
@@ -14,18 +14,12 @@ import pickle
|
|
14 |
import re
|
15 |
import subprocess
|
16 |
import textwrap
|
17 |
-
import base64
|
18 |
import functools
|
19 |
-
from io import BytesIO
|
20 |
from pathlib import Path
|
21 |
-
import
|
22 |
-
import yt_dlp
|
23 |
-
from pydub import AudioSegment
|
24 |
-
import speech_recognition as sr
|
25 |
|
26 |
import requests
|
27 |
from cachetools import TTLCache
|
28 |
-
from PIL import Image
|
29 |
|
30 |
from langchain.schema import Document
|
31 |
from langchain.tools.retriever import create_retriever_tool
|
@@ -34,9 +28,8 @@ from langchain_community.tools.tavily_search import TavilySearchResults
|
|
34 |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
35 |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
36 |
from langchain_core.tools import Tool, tool
|
37 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
38 |
from langchain_groq import ChatGroq
|
39 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
40 |
from langgraph.graph import START, StateGraph, MessagesState
|
41 |
from langgraph.prebuilt import ToolNode, tools_condition
|
42 |
|
@@ -47,230 +40,205 @@ load_dotenv()
|
|
47 |
JSONL_PATH, FAISS_CACHE, EMBED_MODEL = Path("metadata.jsonl"), Path("faiss_index.pkl"), "sentence-transformers/all-mpnet-base-v2"
|
48 |
RETRIEVER_K, CACHE_TTL = 5, 600
|
49 |
API_CACHE = TTLCache(maxsize=256, ttl=CACHE_TTL)
|
|
|
50 |
def cached_get(key: str, fetch_fn):
|
51 |
-
if key in API_CACHE:
|
|
|
52 |
val = fetch_fn()
|
53 |
API_CACHE[key] = val
|
54 |
return val
|
55 |
|
56 |
# ----------------------------------------------------------
|
57 |
-
# Section 2:
|
58 |
# ----------------------------------------------------------
|
59 |
@tool
|
60 |
def python_repl(code: str) -> str:
|
61 |
"""Executes a string of Python code and returns the stdout/stderr."""
|
62 |
code = textwrap.dedent(code).strip()
|
63 |
try:
|
64 |
-
result = subprocess.run(
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
def
|
70 |
-
"""
|
|
|
|
|
|
|
|
|
71 |
try:
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
if image_source.startswith("http"):
|
76 |
-
response = requests.get(image_source, timeout=10)
|
77 |
-
response.raise_for_status()
|
78 |
-
img = Image.open(BytesIO(response.content))
|
79 |
-
else:
|
80 |
-
img = Image.open(image_source)
|
81 |
-
|
82 |
-
# Convert to base64
|
83 |
-
buffered = BytesIO()
|
84 |
-
img.convert("RGB").save(buffered, format="JPEG")
|
85 |
-
b64_string = base64.b64encode(buffered.getvalue()).decode()
|
86 |
-
|
87 |
-
# Create multimodal message
|
88 |
-
msg = HumanMessage(content=[
|
89 |
-
{"type": "text", "text": "Describe this image in detail. Include all objects, people, text, colors, setting, and any other relevant information you can see."},
|
90 |
-
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{b64_string}"}}
|
91 |
-
])
|
92 |
|
93 |
-
|
94 |
-
|
|
|
|
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
return f"
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
103 |
try:
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
'format': 'bestaudio/best',
|
111 |
-
'outtmpl': f'{temp_dir}/%(title)s.%(ext)s',
|
112 |
-
'postprocessors': [{
|
113 |
-
'key': 'FFmpegExtractAudio',
|
114 |
-
'preferredcodec': 'wav',
|
115 |
-
}],
|
116 |
-
}
|
117 |
-
|
118 |
-
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
119 |
-
info = ydl.extract_info(url, download=True)
|
120 |
-
title = info.get('title', 'Unknown')
|
121 |
-
|
122 |
-
# Find the downloaded audio file
|
123 |
-
audio_files = list(Path(temp_dir).glob("*.wav"))
|
124 |
-
if not audio_files:
|
125 |
-
return "Error: Could not download audio from YouTube video"
|
126 |
-
|
127 |
-
audio_file = audio_files[0]
|
128 |
-
|
129 |
-
# Convert audio to text using speech recognition
|
130 |
-
r = sr.Recognizer()
|
131 |
-
|
132 |
-
# Load audio file
|
133 |
-
audio = AudioSegment.from_wav(str(audio_file))
|
134 |
-
|
135 |
-
# Convert to mono and set sample rate
|
136 |
-
audio = audio.set_channels(1)
|
137 |
-
audio = audio.set_frame_rate(16000)
|
138 |
-
|
139 |
-
# Convert to smaller chunks for processing (30 seconds each)
|
140 |
-
chunk_length_ms = 30000
|
141 |
-
chunks = [audio[i:i + chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)]
|
142 |
-
|
143 |
-
transcript_parts = []
|
144 |
-
for i, chunk in enumerate(chunks[:10]): # Limit to first 5 minutes
|
145 |
-
chunk_file = Path(temp_dir) / f"chunk_{i}.wav"
|
146 |
-
chunk.export(chunk_file, format="wav")
|
147 |
-
|
148 |
-
try:
|
149 |
-
with sr.AudioFile(str(chunk_file)) as source:
|
150 |
-
audio_data = r.record(source)
|
151 |
-
text = r.recognize_google(audio_data)
|
152 |
-
transcript_parts.append(text)
|
153 |
-
except sr.UnknownValueError:
|
154 |
-
transcript_parts.append("[Unintelligible audio]")
|
155 |
-
except sr.RequestError as e:
|
156 |
-
transcript_parts.append(f"[Speech recognition error: {e}]")
|
157 |
-
|
158 |
-
transcript = " ".join(transcript_parts)
|
159 |
-
|
160 |
-
return f"YouTube Video: {title}\n\nTranscript (first 5 minutes):\n{transcript}"
|
161 |
-
|
162 |
except Exception as e:
|
163 |
-
|
164 |
-
return f"Error processing YouTube video: {e}"
|
165 |
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
169 |
try:
|
170 |
-
|
|
|
|
|
|
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
ext = 'mp3'
|
180 |
-
elif file_url.lower().endswith('.wav'):
|
181 |
-
ext = 'wav'
|
182 |
-
else:
|
183 |
-
content_type = response.headers.get('content-type', '')
|
184 |
-
if 'mp3' in content_type:
|
185 |
-
ext = 'mp3'
|
186 |
-
elif 'wav' in content_type:
|
187 |
-
ext = 'wav'
|
188 |
-
else:
|
189 |
-
ext = 'mp3' # Default assumption
|
190 |
-
|
191 |
-
audio_file = Path(temp_dir) / f"audio.{ext}"
|
192 |
-
with open(audio_file, 'wb') as f:
|
193 |
-
f.write(response.content)
|
194 |
-
|
195 |
-
# Convert to WAV if necessary
|
196 |
-
if ext != 'wav':
|
197 |
-
audio = AudioSegment.from_file(str(audio_file))
|
198 |
-
wav_file = Path(temp_dir) / "audio.wav"
|
199 |
-
audio.export(wav_file, format="wav")
|
200 |
-
audio_file = wav_file
|
201 |
-
|
202 |
-
# Convert audio to text
|
203 |
-
r = sr.Recognizer()
|
204 |
-
|
205 |
-
# Load and process audio
|
206 |
-
audio = AudioSegment.from_wav(str(audio_file))
|
207 |
-
audio = audio.set_channels(1).set_frame_rate(16000)
|
208 |
-
|
209 |
-
# Process in chunks
|
210 |
-
chunk_length_ms = 30000
|
211 |
-
chunks = [audio[i:i + chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)]
|
212 |
-
|
213 |
-
transcript_parts = []
|
214 |
-
for i, chunk in enumerate(chunks[:20]): # Limit to first 10 minutes
|
215 |
-
chunk_file = Path(temp_dir) / f"chunk_{i}.wav"
|
216 |
-
chunk.export(chunk_file, format="wav")
|
217 |
-
|
218 |
-
try:
|
219 |
-
with sr.AudioFile(str(chunk_file)) as source:
|
220 |
-
audio_data = r.record(source)
|
221 |
-
text = r.recognize_google(audio_data)
|
222 |
-
transcript_parts.append(text)
|
223 |
-
except sr.UnknownValueError:
|
224 |
-
transcript_parts.append("[Unintelligible audio]")
|
225 |
-
except sr.RequestError as e:
|
226 |
-
transcript_parts.append(f"[Speech recognition error: {e}]")
|
227 |
-
|
228 |
-
transcript = " ".join(transcript_parts)
|
229 |
-
return f"Audio file transcript:\n{transcript}"
|
230 |
-
|
231 |
except Exception as e:
|
232 |
-
|
233 |
-
return f"Error processing audio file: {e}"
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\n\n{d.page_content}" for d in docs])
|
246 |
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
|
253 |
# ----------------------------------------------------------
|
254 |
-
# Section 3:
|
255 |
# ----------------------------------------------------------
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
-
**
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
|
|
|
|
272 |
"""
|
273 |
-
)
|
274 |
|
275 |
# ----------------------------------------------------------
|
276 |
# Section 4: Factory Function for Agent Executor
|
@@ -281,80 +249,113 @@ def create_agent_executor(provider: str = "groq"):
|
|
281 |
"""
|
282 |
print(f"Initializing agent with provider: {provider}")
|
283 |
|
284 |
-
# Step 1:
|
285 |
-
if provider == "
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
|
|
|
|
297 |
|
298 |
-
# Step 2: Build Retriever
|
299 |
embeddings = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
|
300 |
if FAISS_CACHE.exists():
|
301 |
-
with open(FAISS_CACHE, "rb") as f:
|
|
|
|
|
302 |
else:
|
303 |
if JSONL_PATH.exists():
|
304 |
-
docs = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
vector_store = FAISS.from_documents(docs, embeddings)
|
306 |
-
with open(FAISS_CACHE, "wb") as f:
|
|
|
|
|
307 |
else:
|
308 |
-
# Create
|
309 |
docs = [Document(page_content="Sample document", metadata={"source": "sample"})]
|
310 |
vector_store = FAISS.from_documents(docs, embeddings)
|
|
|
311 |
|
312 |
retriever = vector_store.as_retriever(search_kwargs={"k": RETRIEVER_K})
|
313 |
|
314 |
-
# Step 3: Create
|
315 |
tools_list = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
python_repl,
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
Tool(name="arxiv_search", func=functools.partial(arxiv_search_func, cache_func=cached_get), description="Searches Arxiv for scientific papers."),
|
323 |
-
create_retriever_tool(retriever=retriever, name="retrieve_examples", description="Retrieve solved questions similar to the user's query."),
|
324 |
]
|
325 |
|
326 |
-
|
327 |
-
tool_definitions = "\n".join([f"- `{tool.name}`: {tool.description}" for tool in tools_list])
|
328 |
-
final_system_prompt = SYSTEM_PROMPT_TEMPLATE.format(tools=tool_definitions)
|
329 |
-
|
330 |
-
llm_with_tools = main_llm.bind_tools(tools_list)
|
331 |
-
|
332 |
-
# Step 5: Define Graph Nodes
|
333 |
-
def retriever_node(state: MessagesState):
|
334 |
-
user_query = state["messages"][-1].content
|
335 |
-
docs = retriever.invoke(user_query)
|
336 |
-
messages = [SystemMessage(content=final_system_prompt)]
|
337 |
-
if docs:
|
338 |
-
example_text = "\n\n---\n\n".join(d.page_content for d in docs)
|
339 |
-
messages.append(AIMessage(content=f"I have found {len(docs)} similar solved examples:\n\n{example_text}", name="ExampleRetriever"))
|
340 |
-
messages.extend(state["messages"])
|
341 |
-
return {"messages": messages}
|
342 |
|
|
|
343 |
def assistant_node(state: MessagesState):
|
344 |
-
|
345 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
|
347 |
-
# Step
|
348 |
builder = StateGraph(MessagesState)
|
349 |
-
builder.add_node("retriever", retriever_node)
|
350 |
builder.add_node("assistant", assistant_node)
|
351 |
-
builder.add_node("tools",
|
352 |
|
353 |
-
builder.add_edge(START, "
|
354 |
-
builder.
|
355 |
-
|
|
|
|
|
|
|
356 |
builder.add_edge("tools", "assistant")
|
357 |
|
358 |
agent_executor = builder.compile()
|
359 |
-
print("Agent Executor created successfully
|
360 |
return agent_executor
|
|
|
2 |
agent.py
|
3 |
|
4 |
This file defines the core logic for a sophisticated AI agent using LangGraph.
|
5 |
+
This version uses Groq's vision-capable models and includes proper reasoning steps.
|
6 |
"""
|
7 |
|
8 |
# ----------------------------------------------------------
|
|
|
14 |
import re
|
15 |
import subprocess
|
16 |
import textwrap
|
|
|
17 |
import functools
|
|
|
18 |
from pathlib import Path
|
19 |
+
from typing import Dict, Any
|
|
|
|
|
|
|
20 |
|
21 |
import requests
|
22 |
from cachetools import TTLCache
|
|
|
23 |
|
24 |
from langchain.schema import Document
|
25 |
from langchain.tools.retriever import create_retriever_tool
|
|
|
28 |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
29 |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
30 |
from langchain_core.tools import Tool, tool
|
|
|
31 |
from langchain_groq import ChatGroq
|
32 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
33 |
from langgraph.graph import START, StateGraph, MessagesState
|
34 |
from langgraph.prebuilt import ToolNode, tools_condition
|
35 |
|
|
|
40 |
JSONL_PATH, FAISS_CACHE, EMBED_MODEL = Path("metadata.jsonl"), Path("faiss_index.pkl"), "sentence-transformers/all-mpnet-base-v2"
|
41 |
RETRIEVER_K, CACHE_TTL = 5, 600
|
42 |
API_CACHE = TTLCache(maxsize=256, ttl=CACHE_TTL)
|
43 |
+
|
44 |
def cached_get(key: str, fetch_fn):
|
45 |
+
if key in API_CACHE:
|
46 |
+
return API_CACHE[key]
|
47 |
val = fetch_fn()
|
48 |
API_CACHE[key] = val
|
49 |
return val
|
50 |
|
51 |
# ----------------------------------------------------------
|
52 |
+
# Section 2: Tool Functions
|
53 |
# ----------------------------------------------------------
|
54 |
@tool
|
55 |
def python_repl(code: str) -> str:
|
56 |
"""Executes a string of Python code and returns the stdout/stderr."""
|
57 |
code = textwrap.dedent(code).strip()
|
58 |
try:
|
59 |
+
result = subprocess.run(
|
60 |
+
["python", "-c", code],
|
61 |
+
capture_output=True,
|
62 |
+
text=True,
|
63 |
+
timeout=10,
|
64 |
+
check=False
|
65 |
+
)
|
66 |
+
if result.returncode == 0:
|
67 |
+
return f"Execution successful.\nSTDOUT:\n```\n{result.stdout}\n```"
|
68 |
+
else:
|
69 |
+
return f"Execution failed.\nSTDOUT:\n```\n{result.stdout}\n```\nSTDERR:\n```\n{result.stderr}\n```"
|
70 |
+
except subprocess.TimeoutExpired:
|
71 |
+
return "Execution timed out (>10s)."
|
72 |
|
73 |
+
def web_search_func(query: str, cache_func) -> str:
|
74 |
+
"""Performs a web search using Tavily and returns a compilation of results."""
|
75 |
+
if not query or not query.strip():
|
76 |
+
return "Error: Empty search query"
|
77 |
+
|
78 |
+
key = f"web:{query}"
|
79 |
try:
|
80 |
+
results = cache_func(key, lambda: TavilySearchResults(max_results=5).invoke(query))
|
81 |
+
if not results:
|
82 |
+
return "No search results found"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
formatted_results = []
|
85 |
+
for res in results:
|
86 |
+
if isinstance(res, dict) and 'url' in res and 'content' in res:
|
87 |
+
formatted_results.append(f"Source: {res['url']}\nContent: {res['content']}")
|
88 |
|
89 |
+
return "\n\n---\n\n".join(formatted_results) if formatted_results else "No valid results found"
|
90 |
+
except Exception as e:
|
91 |
+
return f"Search error: {e}"
|
92 |
|
93 |
+
def wiki_search_func(query: str, cache_func) -> str:
|
94 |
+
"""Searches Wikipedia and returns the top 2 results."""
|
95 |
+
if not query or not query.strip():
|
96 |
+
return "Error: Empty search query"
|
97 |
+
|
98 |
+
key = f"wiki:{query}"
|
99 |
try:
|
100 |
+
docs = cache_func(key, lambda: WikipediaLoader(
|
101 |
+
query=query,
|
102 |
+
load_max_docs=2,
|
103 |
+
doc_content_chars_max=2000
|
104 |
+
).load())
|
105 |
+
|
106 |
+
if not docs:
|
107 |
+
return "No Wikipedia articles found"
|
108 |
|
109 |
+
return "\n\n---\n\n".join([
|
110 |
+
f"Source: {d.metadata.get('source', 'Unknown')}\n\n{d.page_content}"
|
111 |
+
for d in docs
|
112 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
except Exception as e:
|
114 |
+
return f"Wikipedia search error: {e}"
|
|
|
115 |
|
116 |
+
def arxiv_search_func(query: str, cache_func) -> str:
|
117 |
+
"""Searches Arxiv for scientific papers and returns the top 2 results."""
|
118 |
+
if not query or not query.strip():
|
119 |
+
return "Error: Empty search query"
|
120 |
+
|
121 |
+
key = f"arxiv:{query}"
|
122 |
try:
|
123 |
+
docs = cache_func(key, lambda: ArxivLoader(query=query, load_max_docs=2).load())
|
124 |
+
|
125 |
+
if not docs:
|
126 |
+
return "No Arxiv papers found"
|
127 |
|
128 |
+
return "\n\n---\n\n".join([
|
129 |
+
f"Source: {d.metadata.get('source', 'Unknown')}\n"
|
130 |
+
f"Published: {d.metadata.get('Published', 'Unknown')}\n"
|
131 |
+
f"Title: {d.metadata.get('Title', 'Unknown')}\n\n"
|
132 |
+
f"Summary:\n{d.page_content}"
|
133 |
+
for d in docs
|
134 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
except Exception as e:
|
136 |
+
return f"Arxiv search error: {e}"
|
|
|
137 |
|
138 |
+
@tool
|
139 |
+
def analyze_task_and_reason(task_description: str) -> str:
|
140 |
+
"""
|
141 |
+
Analyzes the task and provides reasoning about what approach to take.
|
142 |
+
This tool helps determine what other tools might be needed.
|
143 |
+
"""
|
144 |
+
analysis = {
|
145 |
+
"task_type": "unknown",
|
146 |
+
"has_image": False,
|
147 |
+
"needs_search": False,
|
148 |
+
"needs_computation": False,
|
149 |
+
"approach": "Direct answer"
|
150 |
+
}
|
151 |
+
|
152 |
+
task_lower = task_description.lower()
|
153 |
+
|
154 |
+
# Check for image-related content
|
155 |
+
if any(keyword in task_lower for keyword in [
|
156 |
+
'image', 'picture', 'photo', 'visual', 'see in', 'shown in',
|
157 |
+
'attachment analysis', 'url:', 'http', '.jpg', '.png', '.gif'
|
158 |
+
]):
|
159 |
+
analysis["has_image"] = True
|
160 |
+
analysis["task_type"] = "image_analysis"
|
161 |
+
analysis["approach"] = "Process image with vision model, then analyze content"
|
162 |
+
|
163 |
+
# Check for search needs
|
164 |
+
if any(keyword in task_lower for keyword in [
|
165 |
+
'current', 'recent', 'latest', 'news', 'today', 'what is',
|
166 |
+
'who is', 'when did', 'research', 'find information'
|
167 |
+
]):
|
168 |
+
analysis["needs_search"] = True
|
169 |
+
if analysis["task_type"] == "unknown":
|
170 |
+
analysis["task_type"] = "information_search"
|
171 |
+
analysis["approach"] = "Search for current information"
|
172 |
+
|
173 |
+
# Check for computation needs
|
174 |
+
if any(keyword in task_lower for keyword in [
|
175 |
+
'calculate', 'compute', 'math', 'formula', 'equation',
|
176 |
+
'algorithm', 'code', 'program', 'python'
|
177 |
+
]):
|
178 |
+
analysis["needs_computation"] = True
|
179 |
+
if analysis["task_type"] == "unknown":
|
180 |
+
analysis["task_type"] = "computation"
|
181 |
+
analysis["approach"] = "Use Python for calculations"
|
182 |
+
|
183 |
+
reasoning = f"""TASK ANALYSIS COMPLETE:
|
184 |
|
185 |
+
Task Type: {analysis['task_type']}
|
186 |
+
Has Image: {analysis['has_image']}
|
187 |
+
Needs Search: {analysis['needs_search']}
|
188 |
+
Needs Computation: {analysis['needs_computation']}
|
|
|
189 |
|
190 |
+
RECOMMENDED APPROACH: {analysis['approach']}
|
191 |
+
|
192 |
+
REASONING:
|
193 |
+
- If this involves an image, I should process it directly with my vision capabilities
|
194 |
+
- If this needs current information, I should use web search or Wikipedia
|
195 |
+
- If this needs calculations, I should use the Python tool
|
196 |
+
- I should always provide a comprehensive final answer
|
197 |
+
|
198 |
+
NEXT STEPS: Proceed with the identified approach and use appropriate tools."""
|
199 |
+
|
200 |
+
return reasoning
|
201 |
|
202 |
# ----------------------------------------------------------
|
203 |
+
# Section 3: SYSTEM PROMPT
|
204 |
# ----------------------------------------------------------
|
205 |
+
SYSTEM_PROMPT = """You are an expert multimodal AI assistant with vision capabilities and access to various tools.
|
206 |
+
|
207 |
+
**CORE CAPABILITIES:**
|
208 |
+
1. **Vision Processing**: You can directly process and analyze images from URLs
|
209 |
+
2. **Web Search**: Access current information via web search and Wikipedia
|
210 |
+
3. **Computation**: Execute Python code for calculations and data processing
|
211 |
+
4. **Research**: Search academic papers and retrieve similar examples
|
212 |
+
|
213 |
+
**CRITICAL WORKFLOW:**
|
214 |
+
1. **ANALYZE FIRST**: Always start by using the 'analyze_task_and_reason' tool to understand what you're being asked to do
|
215 |
+
2. **PROCESS IMAGES DIRECTLY**: When you encounter image URLs, process them directly with your vision model - DO NOT use separate image tools
|
216 |
+
3. **USE TOOLS STRATEGICALLY**: Based on your analysis, use appropriate tools (web search, Python, etc.)
|
217 |
+
4. **VALIDATE PARAMETERS**: Always check that you're passing correct parameters to tools
|
218 |
+
5. **SYNTHESIZE**: Combine all information into a comprehensive answer
|
219 |
+
|
220 |
+
**IMAGE HANDLING:**
|
221 |
+
- You have native vision capabilities - process image URLs directly
|
222 |
+
- Look for image URLs in the task description
|
223 |
+
- When you see an image URL, examine it carefully and describe what you see
|
224 |
+
- Relate your visual observations to the question being asked
|
225 |
|
226 |
+
**TOOL USAGE RULES:**
|
227 |
+
- Always use 'analyze_task_and_reason' first to plan your approach
|
228 |
+
- Use web_search for current events, factual information, or research
|
229 |
+
- Use python_repl for calculations, data processing, or code execution
|
230 |
+
- Use wiki_search for encyclopedic information
|
231 |
+
- Use arxiv_search for academic/scientific papers
|
232 |
+
- Use retrieve_examples for similar solved problems
|
233 |
+
|
234 |
+
**OUTPUT FORMAT:**
|
235 |
+
Always end your response with: FINAL ANSWER: [Your comprehensive answer]
|
236 |
+
|
237 |
+
**PARAMETER VALIDATION:**
|
238 |
+
- Check that search queries are meaningful and specific
|
239 |
+
- Ensure Python code is safe and well-formed
|
240 |
+
- Verify image URLs are accessible before processing
|
241 |
"""
|
|
|
242 |
|
243 |
# ----------------------------------------------------------
|
244 |
# Section 4: Factory Function for Agent Executor
|
|
|
249 |
"""
|
250 |
print(f"Initializing agent with provider: {provider}")
|
251 |
|
252 |
+
# Step 1: Initialize LLM with vision capabilities
|
253 |
+
if provider == "groq":
|
254 |
+
# Use Groq's vision-capable model
|
255 |
+
try:
|
256 |
+
llm = ChatGroq(
|
257 |
+
model_name="llama-3.2-90b-vision-preview", # Vision-capable model
|
258 |
+
temperature=0.1,
|
259 |
+
max_tokens=4000
|
260 |
+
)
|
261 |
+
print("Initialized Groq LLM with vision capabilities")
|
262 |
+
except Exception as e:
|
263 |
+
print(f"Error initializing Groq: {e}")
|
264 |
+
raise
|
265 |
+
else:
|
266 |
+
raise ValueError(f"Provider '{provider}' not supported in this version")
|
267 |
|
268 |
+
# Step 2: Build Retriever (if metadata exists)
|
269 |
embeddings = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
|
270 |
if FAISS_CACHE.exists():
|
271 |
+
with open(FAISS_CACHE, "rb") as f:
|
272 |
+
vector_store = pickle.load(f)
|
273 |
+
print("Loaded existing FAISS index")
|
274 |
else:
|
275 |
if JSONL_PATH.exists():
|
276 |
+
docs = []
|
277 |
+
with open(JSONL_PATH, "rt", encoding="utf-8") as f:
|
278 |
+
for line in f:
|
279 |
+
rec = json.loads(line)
|
280 |
+
docs.append(Document(
|
281 |
+
page_content=f"Question: {rec['Question']}\n\nFinal answer: {rec['Final answer']}",
|
282 |
+
metadata={"source": rec["task_id"]}
|
283 |
+
))
|
284 |
vector_store = FAISS.from_documents(docs, embeddings)
|
285 |
+
with open(FAISS_CACHE, "wb") as f:
|
286 |
+
pickle.dump(vector_store, f)
|
287 |
+
print(f"Created new FAISS index with {len(docs)} documents")
|
288 |
else:
|
289 |
+
# Create minimal vector store
|
290 |
docs = [Document(page_content="Sample document", metadata={"source": "sample"})]
|
291 |
vector_store = FAISS.from_documents(docs, embeddings)
|
292 |
+
print("Created minimal FAISS index")
|
293 |
|
294 |
retriever = vector_store.as_retriever(search_kwargs={"k": RETRIEVER_K})
|
295 |
|
296 |
+
# Step 3: Create tools list
|
297 |
tools_list = [
|
298 |
+
analyze_task_and_reason,
|
299 |
+
Tool(
|
300 |
+
name="web_search",
|
301 |
+
func=functools.partial(web_search_func, cache_func=cached_get),
|
302 |
+
description="Search the web for current information. Use specific, focused queries."
|
303 |
+
),
|
304 |
+
Tool(
|
305 |
+
name="wiki_search",
|
306 |
+
func=functools.partial(wiki_search_func, cache_func=cached_get),
|
307 |
+
description="Search Wikipedia for encyclopedic information."
|
308 |
+
),
|
309 |
+
Tool(
|
310 |
+
name="arxiv_search",
|
311 |
+
func=functools.partial(arxiv_search_func, cache_func=cached_get),
|
312 |
+
description="Search Arxiv for academic papers and research."
|
313 |
+
),
|
314 |
python_repl,
|
315 |
+
create_retriever_tool(
|
316 |
+
retriever=retriever,
|
317 |
+
name="retrieve_examples",
|
318 |
+
description="Retrieve similar solved examples from the knowledge base."
|
319 |
+
),
|
|
|
|
|
320 |
]
|
321 |
|
322 |
+
llm_with_tools = llm.bind_tools(tools_list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
|
324 |
+
# Step 4: Define Graph Nodes
|
325 |
def assistant_node(state: MessagesState):
|
326 |
+
"""Main assistant node that processes user input and tool responses."""
|
327 |
+
messages = [SystemMessage(content=SYSTEM_PROMPT)] + state["messages"]
|
328 |
+
try:
|
329 |
+
result = llm_with_tools.invoke(messages)
|
330 |
+
return {"messages": [result]}
|
331 |
+
except Exception as e:
|
332 |
+
error_msg = f"LLM Error: {e}"
|
333 |
+
print(error_msg)
|
334 |
+
return {"messages": [AIMessage(content=f"I encountered an error: {error_msg}")]}
|
335 |
+
|
336 |
+
def tools_node_wrapper(state: MessagesState):
|
337 |
+
"""Wrapper for tool execution with error handling."""
|
338 |
+
try:
|
339 |
+
tool_node = ToolNode(tools_list)
|
340 |
+
return tool_node.invoke(state)
|
341 |
+
except Exception as e:
|
342 |
+
error_msg = f"Tool execution error: {e}"
|
343 |
+
print(error_msg)
|
344 |
+
return {"messages": [AIMessage(content=error_msg)]}
|
345 |
|
346 |
+
# Step 5: Build Graph
|
347 |
builder = StateGraph(MessagesState)
|
|
|
348 |
builder.add_node("assistant", assistant_node)
|
349 |
+
builder.add_node("tools", tools_node_wrapper)
|
350 |
|
351 |
+
builder.add_edge(START, "assistant")
|
352 |
+
builder.add_conditional_edges(
|
353 |
+
"assistant",
|
354 |
+
tools_condition,
|
355 |
+
{"tools": "tools", "__end__": "__end__"}
|
356 |
+
)
|
357 |
builder.add_edge("tools", "assistant")
|
358 |
|
359 |
agent_executor = builder.compile()
|
360 |
+
print("Agent Executor created successfully with vision capabilities")
|
361 |
return agent_executor
|