import os import gradio as gr import requests import pandas as pd from transformers import pipeline # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" HF_MODEL_NAME = "facebook/bart-large-mnli" # Smaller, free model that works well in Spaces # --- Enhanced Agent Definition --- class BasicAgent: def __init__(self, hf_token=None): print("Initializing LLM Agent...") self.hf_token = hf_token self.llm = None try: # Using a smaller model that works better in Spaces self.llm = pipeline( "text-generation", model=HF_MODEL_NAME, token=hf_token, device_map="auto" ) print("LLM initialized successfully") except Exception as e: print(f"Error initializing LLM: {e}") # Fallback to simple responses if LLM fails self.llm = None def __call__(self, question: str) -> str: if not self.llm: return "This is a default answer (LLM not available)" try: print(f"Generating answer for: {question[:50]}...") response = self.llm( question, max_length=100, do_sample=True, temperature=0.7 ) return response[0]['generated_text'] except Exception as e: print(f"Error generating answer: {e}") return f"Error generating answer: {e}" def run_and_submit_all(request: gr.Request): """ Modified to work with Gradio's auth system """ # Get username from auth if not request.username: return "Please login with Hugging Face account", None username = request.username space_id = os.getenv("SPACE_ID") api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" # 1. Instantiate Agent try: agent = BasicAgent(hf_token=os.getenv("HF_TOKEN")) except Exception as e: return f"Error initializing agent: {e}", None agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" # 2. Fetch Questions try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: return "No questions received from server", None except Exception as e: return f"Error fetching questions: {e}", None # 3. Process Questions results_log = [] answers_payload = [] for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if not task_id or not question_text: continue try: answer = agent(question_text) answers_payload.append({ "task_id": task_id, "submitted_answer": answer }) results_log.append({ "Task ID": task_id, "Question": question_text, "Submitted Answer": answer }) except Exception as e: results_log.append({ "Task ID": task_id, "Question": question_text, "Submitted Answer": f"ERROR: {str(e)}" }) if not answers_payload: return "No valid answers generated", pd.DataFrame(results_log) # 4. Submit Answers submission_data = { "username": username, "agent_code": agent_code, "answers": answers_payload } try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result = response.json() status = ( f"Submission Successful!\n" f"User: {result.get('username')}\n" f"Score: {result.get('score', 'N/A')}% " f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')})\n" f"Message: {result.get('message', '')}" ) return status, pd.DataFrame(results_log) except Exception as e: return f"Submission failed: {str(e)}", pd.DataFrame(results_log) # --- Gradio Interface --- with gr.Blocks() as demo: gr.Markdown("# LLM Agent Evaluation Runner") gr.Markdown(""" **Instructions:** 1. Log in with your Hugging Face account 2. Click 'Run Evaluation' 3. View your results """) gr.LoginButton() with gr.Row(): run_btn = gr.Button("Run Evaluation & Submit Answers", variant="primary") status_output = gr.Textbox(label="Status", interactive=False) results_table = gr.DataFrame(label="Results", wrap=True) run_btn.click( fn=run_and_submit_all, inputs=[], outputs=[status_output, results_table] ) if __name__ == "__main__": demo.launch()