P2P / main.py
suntao.0
init
04aed77
raw
history blame
3.96 kB
import base64
import copy
import json
import fire
import os
import pathlib
from poster.figures import extract_figures
from poster.poster import (
generate_html_v2,
generate_poster_v3,
replace_figures_in_poster,
replace_figures_size_in_poster,
take_screenshot,
)
def generate_paper_poster(
url: str,
pdf: str,
vendor: str = "openai",
model: str = "gpt-4o-mini",
text_prompt: str = "",
figures_prompt: str = "",
output: str = "poster.json",
):
"""Generate a paper poster
Args:
url: URL of the PDF file
pdf: Local path of the PDF file
model: Name of the model to use, default is gpt-4o-mini
text_prompt: Text prompt template,
figures_prompt: Figures prompt template,
output: Output file path, default is poster.json
"""
pdf_stem = pdf.replace(".pdf", "")
figures_cache = f"{pdf_stem}_figures.json"
figures_cap_cache = f"{pdf_stem}_figures_cap.json"
figures = []
figures_cap = []
print("开始提取图片...")
if os.path.exists(figures_cache) and os.path.exists(figures_cap_cache):
print(f"使用缓存的图片: {figures_cache}")
with open(figures_cache, "r") as f:
figures = json.load(f)
with open(figures_cap_cache, "r") as f:
figures_cap = json.load(f)
else:
figures_img = extract_figures(url, pdf, task="figure")
figures_table = extract_figures(url, pdf, task="table")
img_caption = extract_figures(url, pdf, task="figurecaption")
table_caption = extract_figures(url, pdf, task="tablecaption")
threshold = 0.85
while True:
figures = [
image
for image, score in figures_img + figures_table
if score >= threshold
]
figures_cap = [
image
for image, score in img_caption + table_caption
if score >= threshold
]
print(f"{threshold:.2f} 提取到 {len(figures)} / {len(figures_cap)} 张图像")
if len(figures) == len(figures_cap):
break
threshold -= 0.05
with open(figures_cache, "w") as f:
json.dump(figures, f, ensure_ascii=False)
with open(figures_cap_cache, "w") as f:
json.dump(figures_cap, f, ensure_ascii=False)
while True:
try:
result = generate_poster_v3(
vendor, model, text_prompt, figures_prompt, pdf, figures_cap, figures
)
poster = result["image_based_poster"]
backup_poster = copy.deepcopy(poster)
poster = replace_figures_in_poster(poster, figures)
# with open(output, "w") as f:
# json.dump(poster.model_dump(), f, ensure_ascii=False)
poster_size = replace_figures_size_in_poster(backup_poster, figures)
print("Now generating HTML...")
result = generate_html_v2(vendor, model, poster_size, figures)
html = result["html_with_figures"]
# with open(output.replace(".json", ".html"), "w") as f:
# f.write(html)
# take_screenshot(output, html)
return poster, html
except Exception as e:
if (
"content management policy" in str(e)
or "message larger than max" in str(e)
or "exceeds the maximum length" in str(e)
or "maximum context length" in str(e)
or "Input is too long" in str(e)
or "image exceeds 5 MB" in str(e)
or "too many total text bytes" in str(e)
or "Range of input length" in str(e)
or "Invalid text" in str(e)
):
raise
print(f"处理文件 {pdf} 时出错: {e}")
if __name__ == "__main__":
fire.Fire(generate_paper_poster)