File size: 30,521 Bytes
04aed77 eae2ecb 04aed77 d4bdb14 04aed77 44100d0 04aed77 44100d0 5cd650a 44100d0 04aed77 bdc569e 04aed77 5cd650a d4bdb14 d32760a bdc569e d32760a 04aed77 d32760a 04aed77 d32760a 04aed77 d4bdb14 d32760a eae2ecb d32760a eae2ecb d32760a d4bdb14 d32760a d4bdb14 bdc569e 04aed77 d32760a 04aed77 d4bdb14 eae2ecb d4bdb14 d32760a 04aed77 d32760a 04aed77 d32760a 04aed77 d32760a 04aed77 d32760a 04aed77 d32760a 04aed77 d32760a eae2ecb d32760a eae2ecb d32760a 04aed77 60a7b9d 04aed77 d4bdb14 04aed77 d4bdb14 04aed77 d4bdb14 eae2ecb 04aed77 d4bdb14 04aed77 d4bdb14 04aed77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 |
import base64
import io
import json
import os
import re
import subprocess
import time
from datetime import datetime
import cairosvg
from concurrent.futures import ThreadPoolExecutor
from PIL import Image
from pdf2image import convert_from_path
from playwright.sync_api import sync_playwright
from pydantic import BaseModel, Field, create_model
from tqdm import tqdm
from langchain import hub
# from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_openai import ChatOpenAI, AzureChatOpenAI
from langchain_openai.chat_models.base import BaseChatOpenAI
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_core.prompts import (
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
ChatPromptTemplate,
MessagesPlaceholder,
PromptTemplate,
)
from langchain_core.prompts.image import ImagePromptTemplate
from langchain_core.output_parsers import PydanticOutputParser
from langchain_core.exceptions import OutputParserException
from langchain.output_parsers import OutputFixingParser
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage
def create_dynamic_poster_model(sections: dict[str, str]) -> type[BaseModel]:
"""Dynamically create a Poster model based on sections returned by LLM."""
fields = {
"title": (str, Field(default="", description="Title of the paper")),
"authors": (str, Field(default="", description="Authors of the paper")),
"affiliation": (
str,
Field(default="", description="Affiliation of the authors"),
),
}
for section_name, description in sections.items():
fields[section_name] = (str, Field(default="", description=description))
return create_model("DynamicPoster", **fields)
def remove_think_tags(llm_output):
if hasattr(llm_output, "content"):
content = llm_output.content
cleaned_content = re.sub(r"<think>.*?</think>", "", content, flags=re.DOTALL)
cleaned_content = re.sub(r"<think>.*", "", cleaned_content, flags=re.DOTALL)
return AIMessage(content=cleaned_content)
elif isinstance(llm_output, str):
cleaned_output = re.sub(r"<think>.*?</think>", "", llm_output, flags=re.DOTALL)
cleaned_output = re.sub(r"<think>.*", "", cleaned_output, flags=re.DOTALL)
return cleaned_output
return llm_output
def replace_figures_in_markdown(
markdown: str,
figures: list[str],
) -> str:
pattern = r"!\[(.*?)\]\((\d+)\)"
def replacer(match):
figure_index = int(match.group(2))
if 0 <= figure_index < len(figures):
return f""
return match.group(0)
return re.sub(pattern, replacer, markdown)
def replace_figures_in_poster(
poster: BaseModel,
figures: list[str],
) -> BaseModel:
for field in poster.model_fields:
if hasattr(poster, field):
value = getattr(poster, field)
if isinstance(value, str):
setattr(poster, field, replace_figures_in_markdown(value, figures))
return poster
def replace_figures_size_in_markdown(
markdown: str,
figures: list[str],
) -> str:
pattern = r"!\[(.*?)\]\((\d+)\)"
def replacer(match):
figure_index = int(match.group(2))
if 0 <= figure_index < len(figures):
data = base64.b64decode(figures[figure_index])
image = Image.open(io.BytesIO(data))
width, height = image.size
return f"})"
return match.group(0)
return re.sub(pattern, replacer, markdown)
def replace_figures_size_in_poster(
poster: BaseModel,
figures: list[str],
) -> BaseModel:
for field in poster.model_fields:
if hasattr(poster, field):
value = getattr(poster, field)
if isinstance(value, str):
setattr(poster, field, replace_figures_size_in_markdown(value, figures))
return poster
def replace_figures_in_html(html: str, figures: list[str]) -> str:
pattern = r"src=\"(\d+)\""
def replacer(match):
figure_index = int(match.group(1))
if 0 <= figure_index < len(figures):
return f'src="data:image/png;base64,{figures[figure_index]}"'
return match.group(0)
return re.sub(pattern, replacer, html)
def get_sizes(type: str, html: str) -> list[list[dict]]:
with sync_playwright() as p:
browser = p.chromium.launch(headless=True)
page = browser.new_page()
page.set_content(html)
contents = page.query_selector_all(f".{type}-content")
content_sizes = []
for content in contents:
groups = content.query_selector_all(f"> *")
group_sizes = []
for group in groups:
is_group = group.evaluate(
f"element => element.classList.contains('{type}-group')"
)
if not is_group:
bounding_box = group.bounding_box()
group_sizes.append(
[
{
"width": bounding_box["width"],
"height": bounding_box["height"],
}
]
)
continue
group.evaluate("(element) => element.style.alignItems = 'start'")
columns = group.query_selector_all(f".{type}-column")
column_sizes = []
for column in columns:
bounding_box = column.bounding_box()
column_sizes.append(
{
"width": bounding_box["width"],
"height": bounding_box["height"],
}
)
group_sizes.append(column_sizes)
content_sizes.append(group_sizes)
browser.close()
return content_sizes
def generate_html_v2(vendor: str, model: str, poster: BaseModel, figures: list[str]):
if vendor == "openai":
if "o1" in model or "o3" in model or "o4" in model:
llm = ChatOpenAI(
model=model,
temperature=1,
max_tokens=8000,
)
else:
llm = BaseChatOpenAI(
model=model,
temperature=1,
max_tokens=8000,
# model_kwargs={
# "extra_body": {"chat_template_kwargs": {"enable_thinking": False}}
# },
)
style = """<style>
html {
font-family: "Times New Roman", Times, serif;
font-size: 16px;
}
body {
width: 1280px;
margin: 0;
}
ol,
ul {
margin-left: 0.5rem;
}
li {
margin-bottom: 0.5rem;
}
img {
width: calc(100% - 2rem);
margin: 0.5rem 1rem;
}
.poster-header {
padding: 2rem;
text-align: center;
}
.poster-title {
margin-bottom: 1rem;
font-size: 1.875rem;
font-weight: bold;
color: inherit !important;
}
.poster-author {
margin-bottom: 0.5rem;
color: inherit !important;
}
.poster-affiliation {
color: inherit !important;
}
.poster-content {
padding: 1rem;
}
.section {
margin-bottom: 1rem;
}
.section-title {
padding: 0.5rem 1rem;
font-weight: bold;
}
.section-content {
margin: 0 1rem;
}
</style>
"""
layout_prompt = ChatPromptTemplate.from_messages(
[
SystemMessage(
content="You are a professional academic poster web page creator and your task is to generate the HTML code for a nicely laid out academic poster web page based on the object provided."
),
HumanMessagePromptTemplate.from_template(
"""# Object Description
- The object contains several fields. Each field represents a section, except for the title, author and affiliation fields. The field name is the title of the section and the field value is the Markdown content of the section.
- The image in Markdown is given in the format .
# HTML Structure
- Only generate the HTML code inside <body>, without any other things.
- Place title, author and affiliation inside <div class="poster-header">. Place title inside <div class="poster-title">, author inside <div class="poster-author"> and affiliation inside <div class="poster-affiliation">.
- Place content inside <div class="poster-content">.
- Place each section inside <div class="section">. Place section title inside <div class="section-title"> and section content inside <div class="section-content">.
- Use <p> for paragraphs.
- Use <ol> and <li> for ordered lists, and <ul> and <li> for unordered lists.
- Use <img src="image_index" alt="alt_text"> for images.
- Use <strong> for bold text and <em> for italic text.
- Do not use tags other than <div>, <p>, <ol>, <ul>, <li>, <img>, <strong>, <em>.
- Do not create any sections that are not in the object. Do not split or merge any existing sections.
- Sections and contents should be strictly equal to the object, and should be placed strictly in the order of the object.
# Color Specification
- Select at least 2 colors from the visual identity of the affiliation. If there are multiple affiliations, consider the most well-known one.
- For example, Tsinghua University uses #660874 and #d93379, Beihang University uses #005bac and #003da6, Zhejiang University uses #003f88 and #b01f24. These are just examples, you must pick colors from the actual visual identity of the affiliation.
- Add text and background color to poster header and section title using inline style. Use gradient to make the poster more beautiful.
- The text and background color of each section title should be the same.
- Do not add styles other than color, background, border, box-shadow.
- Do not add styles like width, height, padding, margin, font-size, font-weight, border-radius.
# Layout Specification
- Optionally, inside <div class="poster-content">, group sections into columns using <div class="poster-group" style="display: flex; gap: 1rem"> and <div class="poster-column" style="flex: 1">.
- You must determine the optimal number and flex grow value of columns to create a balanced poster layout. If one column becomes too tall, redistribute sections to other columns.
- There can be multiple groups with different number and flex grow of columns.
- Optionally, inside <div class="section-content">, group texts and images into columns using <div class="section-group" style="display: flex; gap: 0.5rem"> and <div class="section-column" style="flex: 1">.
- For example, if there are two images in two columns whose aspect ratios are 1.2 and 2 respectively, the flex grow of two columns should be 1.2 and 2 respectively, to make the columns have the same height.
- Calculate the size of each image based on column width and aspect ratios. Add comment <!-- width = display_width, height = display_height --> before each image.
- Rearrange the structure and order of sections, texts and images to make the height of each column in the same group approximately the same.
- For example, if there are too many images in one section that make the height of the column too large, group the images into columns.
- The display width of each image should not be too large or too small compared to its original width.
- DO NOT LEAVE MORE THAN 5% BLANK SPACE IN THE POSTER.
- Use a 3-column or 4-column layout with a landscape (horizontal) orientation for optimal visual presentation.
# Output Requirement
- Please output the result in the following format:
<think>
Think step by step, considering all structures and specifications listed above one by one.
Calculate the width and height of each column, text and image in detail, based on given style.
</think>
```html
HTML code inside <body>.
```
- Please make the content in <think> as detailed and comprehensive as possible.
# Existing Style
{style}
# Object
{poster}
"""
),
]
)
layout_chain = layout_prompt | llm
# output = layout_chain.invoke({"style": style, "poster": poster}).content
layout_prompt.append(
MessagesPlaceholder(variable_name="react"),
)
HTML_TEMPLATE = """<!DOCTYPE html>
<html>
<head>
<title>Poster</title>
{style}
<script>
MathJax = {{ tex: {{ inlineMath: [["$", "$"]] }} }};
</script>
<script
id="MathJax-script"
async
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"
></script>
</head>
<body>
{body}
</body>
</html>
"""
def get_content_sizes(sizes: list[list[dict]]) -> float:
"""Calculate the total content size from the sizes data structure"""
return sum(
column["width"] * column["height"]
for content in sizes
for group in content
for column in group
)
def get_total_size(sizes: list[list[dict]]) -> float:
"""Calculate the total size including spacing from the sizes data structure"""
return sum(
(
sum(column["width"] for column in group)
* max((column["height"] for column in group), default=0)
)
for content in sizes
for group in content
)
def calculate_blank_proportion(poster_sizes, section_sizes) -> float:
"""Calculate the proportion of blank space in the poster"""
poster_content_sizes = get_content_sizes(poster_sizes)
section_content_sizes = get_content_sizes(section_sizes)
poster_total_size = get_total_size(poster_sizes)
section_total_size = get_total_size(section_sizes)
if poster_total_size == 0:
return 1.0
return (
1.0
- (poster_content_sizes - (section_total_size - section_content_sizes))
/ poster_total_size
)
max_attempts = 5
attempt = 0
min_proportion = float('inf')
min_html = None
min_html_with_figures = None
min_body = None
min_poster_sizes = None
min_section_sizes = None
def generate_single_html(prompt_input):
"""单个HTML生成函数,用于多线程执行"""
result_output = layout_chain.invoke(prompt_input).content
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Generated HTML")
body = re.search(r"```html\n(.*?)\n```", result_output, re.DOTALL).group(1)
html = HTML_TEMPLATE.format(style=style, body=body)
html_with_figures = replace_figures_in_html(html, figures)
poster_sizes = get_sizes("poster", html_with_figures)
section_sizes = get_sizes("section", html_with_figures)
proportion = calculate_blank_proportion(poster_sizes, section_sizes)
return {
"body": body,
"html": html,
"html_with_figures": html_with_figures,
"poster_sizes": poster_sizes,
"section_sizes": section_sizes,
"proportion": proportion
}
# 初始生成两个HTML布局
prompt_inputs = [
{"style": style, "poster": poster, "react": []},
{"style": style, "poster": poster, "react": []}
]
with ThreadPoolExecutor(max_workers=2) as executor:
initial_results = list(executor.map(generate_single_html, prompt_inputs))
# 检查初始生成的两个结果
for result in initial_results:
proportion = result["proportion"]
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] 初始生成比例: {proportion:.0%}")
# 更新最佳结果
if proportion < min_proportion:
min_proportion = proportion
min_html = result["html"]
min_html_with_figures = result["html_with_figures"]
min_body = result["body"]
min_poster_sizes = result["poster_sizes"]
min_section_sizes = result["section_sizes"]
# 如果找到满足条件的结果,直接返回
if min_proportion <= 0.1:
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Initial generation successful, remaining {min_proportion:.0%} blank spaces.")
return {"html": min_html, "html_with_figures": min_html_with_figures}
while True:
attempt += 1
if attempt > max_attempts:
if min_proportion <= 0.2:
print(
f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Reached max attempts ({max_attempts}), returning best result with {min_proportion:.0%} blank spaces."
)
return {"html": min_html, "html_with_figures": min_html_with_figures}
else:
raise ValueError(f"Invalid blank spaces: {min_proportion:.0%}")
# 基于最好的结果生成两个新的
react = [
HumanMessage(
content=f"""# Previous Body
{min_body}
# Previous Size of Columns in Poster
{min_poster_sizes}
# Previous Size of Columns in Section
{min_section_sizes}
Now there are {min_proportion:.0%} blank spaces. Please regenerate the content to create a more balanced poster layout.
"""
),
]
prompt_inputs = [
{"style": style, "poster": poster, "react": react},
{"style": style, "poster": poster, "react": react}
]
# 使用多线程同时生成两个HTML
with ThreadPoolExecutor(max_workers=2) as executor:
results = list(executor.map(generate_single_html, prompt_inputs))
# 检查两个结果
for result in results:
proportion = result["proportion"]
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] 当前比例: {proportion:.0%}")
# 更新最佳结果
if proportion < min_proportion:
min_proportion = proportion
min_html = result["html"]
min_html_with_figures = result["html_with_figures"]
min_body = result["body"]
min_poster_sizes = result["poster_sizes"]
min_section_sizes = result["section_sizes"]
# 如果找到满足条件的结果,直接返回
if proportion <= 0.1:
print(
f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Attempted {attempt} times, remaining {proportion:.0%} blank spaces."
)
return {"html": result["html"], "html_with_figures": result["html_with_figures"]}
# def take_screenshot(output: str, html: str):
# with sync_playwright() as p:
# browser = p.chromium.launch(headless=True)
# page = browser.new_page(viewport={"width": 1280, "height": 100})
# page.set_content(html)
# page.screenshot(
# type="png", path=output.replace(".json", ".png"), full_page=True
# )
# browser.close()
def replace_figures_in_svg(svg: str, figures: list[str]) -> str:
pattern = r"href=\"(\d+)\""
def replacer(match):
figure_index = int(match.group(1))
if 0 <= figure_index < len(figures):
return f'href="data:image/png;base64,{figures[figure_index]}"'
return match.group(0)
return re.sub(pattern, replacer, svg)
def svg_to_png(output: str, svg: str):
cairosvg.svg2png(
bytestring=svg.encode("utf-8"),
write_to=output.replace(".json", ".png"),
output_width=7000,
)
def replace_figures_in_latex(latex: str, figures: list[str]) -> str:
pattern = r"\\includegraphics(\[.*?\])?\{(\d+)\}"
def replacer(match):
figure_index = int(match.group(2))
options = match.group(1) or ""
if 0 <= figure_index < len(figures):
return f"\\includegraphics{options}{{figure_{figure_index}.png}}"
return match.group(0)
return re.sub(pattern, replacer, latex)
def latex_to_png(output: str, latex: str):
subprocess.run(
[
"pdflatex",
"-interaction=nonstopmode",
f"-output-directory={os.path.dirname(output)}",
output.replace(".json", ".tex"),
],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
images = convert_from_path(output.replace(".json", ".pdf"), dpi=300)
images[0].save(output.replace(".json", ".png"))
def generate_poster_v3(
vendor: str,
model: str,
text_prompt: str,
figures_prompt: str,
pdf: str,
figures: list[str],
figures_index: list[str],
) -> dict:
# Setup LLM
if vendor == "openai":
if "o1" in model or "o3" in model or "o4" in model:
llm = ChatOpenAI(
model=model,
temperature=1,
max_tokens=8000,
)
else:
llm = BaseChatOpenAI(
model=model,
temperature=1,
max_tokens=8000,
)
elif vendor == "azure":
llm = AzureChatOpenAI(
azure_deployment=model,
temperature=1,
max_tokens=8000,
)
else:
raise ValueError(f"Unsupported vendor: {vendor}")
loader = PyMuPDFLoader(pdf)
pages = loader.load()
paper_content = "\n".join([page.page_content for page in pages])
from .compress import compress_image
figure_messages = [
HumanMessagePromptTemplate(
prompt=[
ImagePromptTemplate(
input_variables=["figure"],
template={"url": "data:image/png;base64,{figure}"},
),
],
).format(figure=compress_image(figure, quality=85, max_size=(64, 64)))
for figure in figures
]
json_format_example = """
```json
{{
"Introduction": "Brief overview of the paper's main topic and objectives.",
"Methodology": "Description of the methods used in the research.",
"Results": "Summary of the key findings and results."
}}
```
"""
sections = None
for _ in range(5):
section_prompt = ChatPromptTemplate.from_messages(
[
SystemMessage(content="You are an expert in academic paper analysis."),
HumanMessagePromptTemplate.from_template(
"""Please analyze the paper content and identify the key sections that should be included in the poster.
For each section, provide a concise description of what should be included. First, determine the paper type:
- For methodology research papers: Focus on method description, experimental results, and research methodology.
- For benchmark papers: Highlight task definitions, dataset construction, and evaluation outcomes.
- For survey/review papers: Emphasize field significance, key developmental milestones, critical theories/techniques, current challenges, and emerging trends.
Note that the specific section names should be derived from the paper's content. Related sections can be combined to avoid fragmentation. Limit the total number of sections to maintain clarity. Do not include acknowledgements or references sections.
Return the result as a flat JSON object with section names as keys and descriptions as values, without nested structures. You MUST use Markdown code block syntax with the json language specifier.
Example format:
{json_format_example}
Paper content:
{paper_content}
"""
),
]
)
sections_response = llm.invoke(
section_prompt.format(
json_format_example=json_format_example, paper_content=paper_content
)
)
json_pattern = r"```json(.*?)```"
match = re.search(json_pattern, sections_response.content, re.DOTALL)
if match:
json_content = match.group(1)
else:
continue
try:
sections = eval(json_content.strip())
if all(
isinstance(k, str) and isinstance(v, str) for k, v in sections.items()
):
break
except Exception:
continue
if sections is None:
raise ValueError("Failed to retrieve valid sections from LLM response.")
DynamicPoster = create_dynamic_poster_model(sections)
figures_description_prompt = ChatPromptTemplate.from_messages(
[
SystemMessage(
content="You are an academic image analysis expert. Provide concise descriptions (under 100 words) of academic figures, diagrams, charts, or images. Identify what the figure displays, its likely purpose in academic literature, and highlight key data points or trends. Focus on clarity and academic relevance while maintaining precision in your analysis."
),
HumanMessagePromptTemplate(
prompt=[
# PromptTemplate(template="Describe this image:"),
ImagePromptTemplate(
input_variables=["image_data"],
template={"url": "data:image/png;base64,{image_data}"},
),
],
),
]
)
use_claude = False
mllm = BaseChatOpenAI(
temperature=1,
max_tokens=8000,
)
figures_with_descriptions = ""
figure_list = []
figures_description_cache = pdf.replace(".pdf", "_figures_description.json")
if use_claude and os.path.exists(figures_description_cache):
with open(figures_description_cache, "r") as f:
figures_with_descriptions = f.read()
else:
figure_chain = figures_description_prompt | (mllm if use_claude else llm)
def process_single_figure(figure_data):
figure, index = figure_data
figure_description_response = figure_chain.invoke({"image_data": figure})
return {
"index": index,
"figure": figure,
"description": figure_description_response.content
}
figure_data_list = [(figure, i) for i, figure in enumerate(figures)]
with ThreadPoolExecutor(max_workers=4) as executor:
results = list(tqdm(
executor.map(process_single_figure, figure_data_list),
total=len(figure_data_list),
desc=f"处理图片 {pdf}"
))
for result in results:
i = result["index"]
print(f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] 处理图片 {i} 完成")
figures_with_descriptions += f"""
<figure_{i}>
{result["description"]}
</figure_{i}>
"""
figure_list.append({
"figure": result["figure"],
"description": result["description"]
})
if use_claude:
with open(figures_description_cache, "w") as f:
f.write(figures_with_descriptions)
text_prompt = ChatPromptTemplate.from_messages(
[
SystemMessage(
content="You are a helpful academic expert, who is specialized in generating a text-based paper poster, from given contents."
),
HumanMessagePromptTemplate.from_template(
"""Below is the figures with descriptions in the paper:
<figures>
{figures}
</figures>
Below is the content of the paper:
<paper_content>
{paper_content}
</paper_content>
If figures can effectively convey the poster content, simplify the related text to avoid redundancy. Include essential mathematical formulas where they enhance understanding.
{format_instructions}
Ensure all sections are precise, concise, and presented in markdown format without headings."""
),
]
)
parser = PydanticOutputParser(pydantic_object=DynamicPoster)
fixing_parser = OutputFixingParser.from_llm(parser=parser, llm=llm)
text_prompt = text_prompt.partial(
format_instructions=parser.get_format_instructions()
)
text_chain = text_prompt | llm | remove_think_tags | parser
try:
text_poster = text_chain.invoke(
{"paper_content": paper_content, "figures": figures_with_descriptions}
)
except OutputParserException as e:
text_poster = fixing_parser.parse(e.llm_output)
figures_prompt = ChatPromptTemplate.from_messages(
[
SystemMessagePromptTemplate.from_template(
"You are a helpful academic expert, who is specialized in generating a paper poster, from given contents and figures. "
),
HumanMessagePromptTemplate.from_template(
"""Below is the figures with descriptions in the paper:
<figures>
{figures}
</figures>
I have already generated a text-based poster as follows:
<poster_content>
{poster_content}
</poster_content>
The paper content is as follows:
<paper_content>
{paper_content}
</paper_content>
Insert figures into the poster content using figure index notation as ``. For example, ``.
The figure_index MUST be an integer starting from 0, and no other text should be used in the figure_index position.
Each figure should be used at most once, with precise and accurate placement.
Prioritize pictures and tables based on their relevance and importance to the content.
{format_instructions}"""
),
]
)
figures_prompt = figures_prompt.partial(
figures=figures_with_descriptions,
format_instructions=parser.get_format_instructions(),
)
figures_chain = figures_prompt | llm | remove_think_tags | parser
try:
figures_poster = figures_chain.invoke(
{"poster_content": text_poster, "paper_content": paper_content}
)
except OutputParserException as e:
figures_poster = fixing_parser.parse(e.llm_output)
return {
"sections": sections,
"figures": figure_list,
"text_based_poster": text_poster,
"image_based_poster": figures_poster,
}
|