Spaces:
Sleeping
Sleeping
Update modules/studentact/current_situation_analysis.py
Browse files
modules/studentact/current_situation_analysis.py
CHANGED
|
@@ -88,29 +88,51 @@ def analyze_vocabulary_diversity(doc):
|
|
| 88 |
|
| 89 |
def analyze_cohesion(doc):
|
| 90 |
"""Analiza la cohesión textual"""
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
def analyze_structure(doc):
|
| 100 |
"""Analiza la complejidad estructural"""
|
| 101 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
root_distances = []
|
| 103 |
for token in doc:
|
| 104 |
if token.dep_ == 'ROOT':
|
| 105 |
depths = get_dependency_depths(token)
|
| 106 |
root_distances.extend(depths)
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
except Exception as e:
|
| 110 |
logger.error(f"Error en analyze_structure: {str(e)}")
|
| 111 |
return 0.0
|
| 112 |
|
| 113 |
-
|
| 114 |
# Funciones auxiliares de análisis
|
| 115 |
def get_dependency_depths(token, depth=0):
|
| 116 |
"""Obtiene las profundidades de dependencia"""
|
|
@@ -122,7 +144,7 @@ def get_dependency_depths(token, depth=0):
|
|
| 122 |
def normalize_score(value, optimal_value=1.0, range_factor=2.0, optimal_length=None,
|
| 123 |
optimal_connections=None, optimal_depth=None):
|
| 124 |
"""
|
| 125 |
-
Normaliza un valor a una escala de 0-1.
|
| 126 |
|
| 127 |
Args:
|
| 128 |
value: Valor a normalizar
|
|
@@ -136,23 +158,46 @@ def normalize_score(value, optimal_value=1.0, range_factor=2.0, optimal_length=N
|
|
| 136 |
float: Valor normalizado entre 0 y 1
|
| 137 |
"""
|
| 138 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
if optimal_depth is not None:
|
| 140 |
-
|
| 141 |
-
max_diff = optimal_depth * range_factor
|
| 142 |
-
return 1.0 - min(diff / max_diff, 1.0)
|
| 143 |
elif optimal_connections is not None:
|
| 144 |
-
|
| 145 |
-
max_diff = optimal_connections * range_factor
|
| 146 |
-
return 1.0 - min(diff / max_diff, 1.0)
|
| 147 |
elif optimal_length is not None:
|
| 148 |
-
|
| 149 |
-
max_diff = optimal_length * range_factor
|
| 150 |
-
return 1.0 - min(diff / max_diff, 1.0)
|
| 151 |
else:
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
except Exception as e:
|
| 157 |
logger.error(f"Error en normalize_score: {str(e)}")
|
| 158 |
return 0.0
|
|
|
|
| 88 |
|
| 89 |
def analyze_cohesion(doc):
|
| 90 |
"""Analiza la cohesión textual"""
|
| 91 |
+
try:
|
| 92 |
+
sentences = list(doc.sents)
|
| 93 |
+
if len(sentences) < 2:
|
| 94 |
+
logger.warning("Texto demasiado corto para análisis de cohesión")
|
| 95 |
+
return 0.0
|
| 96 |
+
|
| 97 |
+
connections = 0
|
| 98 |
+
for i in range(len(sentences)-1):
|
| 99 |
+
sent1_words = {token.lemma_ for token in sentences[i]}
|
| 100 |
+
sent2_words = {token.lemma_ for token in sentences[i+1]}
|
| 101 |
+
connections += len(sent1_words.intersection(sent2_words))
|
| 102 |
+
|
| 103 |
+
# Validar que haya conexiones antes de normalizar
|
| 104 |
+
if connections == 0:
|
| 105 |
+
logger.warning("No se encontraron conexiones entre oraciones")
|
| 106 |
+
return 0.0
|
| 107 |
+
|
| 108 |
+
return normalize_score(connections, optimal_connections=max(5, len(sentences) * 0.2))
|
| 109 |
+
except Exception as e:
|
| 110 |
+
logger.error(f"Error en analyze_cohesion: {str(e)}")
|
| 111 |
+
return 0.0
|
| 112 |
|
| 113 |
def analyze_structure(doc):
|
| 114 |
"""Analiza la complejidad estructural"""
|
| 115 |
try:
|
| 116 |
+
if len(doc) == 0:
|
| 117 |
+
logger.warning("Documento vacío")
|
| 118 |
+
return 0.0
|
| 119 |
+
|
| 120 |
root_distances = []
|
| 121 |
for token in doc:
|
| 122 |
if token.dep_ == 'ROOT':
|
| 123 |
depths = get_dependency_depths(token)
|
| 124 |
root_distances.extend(depths)
|
| 125 |
+
|
| 126 |
+
if not root_distances:
|
| 127 |
+
logger.warning("No se encontraron estructuras de dependencia")
|
| 128 |
+
return 0.0
|
| 129 |
+
|
| 130 |
+
avg_depth = sum(root_distances) / len(root_distances)
|
| 131 |
+
return normalize_score(avg_depth, optimal_depth=max(3, len(doc) * 0.1))
|
| 132 |
except Exception as e:
|
| 133 |
logger.error(f"Error en analyze_structure: {str(e)}")
|
| 134 |
return 0.0
|
| 135 |
|
|
|
|
| 136 |
# Funciones auxiliares de análisis
|
| 137 |
def get_dependency_depths(token, depth=0):
|
| 138 |
"""Obtiene las profundidades de dependencia"""
|
|
|
|
| 144 |
def normalize_score(value, optimal_value=1.0, range_factor=2.0, optimal_length=None,
|
| 145 |
optimal_connections=None, optimal_depth=None):
|
| 146 |
"""
|
| 147 |
+
Normaliza un valor a una escala de 0-1 con manejo de casos extremos.
|
| 148 |
|
| 149 |
Args:
|
| 150 |
value: Valor a normalizar
|
|
|
|
| 158 |
float: Valor normalizado entre 0 y 1
|
| 159 |
"""
|
| 160 |
try:
|
| 161 |
+
# Validar valores negativos o cero
|
| 162 |
+
if value < 0:
|
| 163 |
+
logger.warning(f"Valor negativo recibido: {value}")
|
| 164 |
+
return 0.0
|
| 165 |
+
|
| 166 |
+
# Manejar caso donde el valor es cero
|
| 167 |
+
if value == 0:
|
| 168 |
+
logger.warning("Valor cero recibido")
|
| 169 |
+
return 0.0
|
| 170 |
+
|
| 171 |
+
# Identificar el valor de referencia a usar
|
| 172 |
if optimal_depth is not None:
|
| 173 |
+
reference = optimal_depth
|
|
|
|
|
|
|
| 174 |
elif optimal_connections is not None:
|
| 175 |
+
reference = optimal_connections
|
|
|
|
|
|
|
| 176 |
elif optimal_length is not None:
|
| 177 |
+
reference = optimal_length
|
|
|
|
|
|
|
| 178 |
else:
|
| 179 |
+
reference = optimal_value
|
| 180 |
+
|
| 181 |
+
# Validar valor de referencia
|
| 182 |
+
if reference <= 0:
|
| 183 |
+
logger.warning(f"Valor de referencia inválido: {reference}")
|
| 184 |
+
return 0.0
|
| 185 |
+
|
| 186 |
+
# Calcular diferencia y máxima diferencia permitida
|
| 187 |
+
diff = abs(value - reference)
|
| 188 |
+
max_diff = reference * range_factor
|
| 189 |
+
|
| 190 |
+
# Validar max_diff
|
| 191 |
+
if max_diff <= 0:
|
| 192 |
+
logger.warning(f"Máxima diferencia inválida: {max_diff}")
|
| 193 |
+
return 0.0
|
| 194 |
+
|
| 195 |
+
# Calcular score normalizado
|
| 196 |
+
score = 1.0 - min(diff / max_diff, 1.0)
|
| 197 |
+
|
| 198 |
+
# Asegurar que el resultado esté entre 0 y 1
|
| 199 |
+
return max(0.0, min(1.0, score))
|
| 200 |
+
|
| 201 |
except Exception as e:
|
| 202 |
logger.error(f"Error en normalize_score: {str(e)}")
|
| 203 |
return 0.0
|