Spaces:
Sleeping
Sleeping
Update modules/studentact/current_situation_interface.py
Browse files
modules/studentact/current_situation_interface.py
CHANGED
|
@@ -145,7 +145,10 @@ def display_current_situation_interface(lang_code, nlp_models, t):
|
|
| 145 |
# Mostrar resultados en la columna derecha
|
| 146 |
with results_col:
|
| 147 |
if st.session_state.show_results and st.session_state.current_metrics is not None:
|
| 148 |
-
display_results(
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
except Exception as e:
|
| 151 |
logger.error(f"Error en interfaz principal: {str(e)}")
|
|
@@ -153,11 +156,17 @@ def display_current_situation_interface(lang_code, nlp_models, t):
|
|
| 153 |
|
| 154 |
###################################3333
|
| 155 |
|
| 156 |
-
def display_results(
|
| 157 |
"""
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
| 159 |
"""
|
| 160 |
try:
|
|
|
|
|
|
|
|
|
|
| 161 |
# Obtener umbrales según el tipo de texto seleccionado
|
| 162 |
thresholds = TEXT_TYPES[text_type]['thresholds'] if text_type else {
|
| 163 |
'vocabulary': {'min': 0.60, 'target': 0.75},
|
|
|
|
| 145 |
# Mostrar resultados en la columna derecha
|
| 146 |
with results_col:
|
| 147 |
if st.session_state.show_results and st.session_state.current_metrics is not None:
|
| 148 |
+
display_results(
|
| 149 |
+
metrics=st.session_state.current_metrics,
|
| 150 |
+
text_type='student_essay' # o el tipo por defecto que prefieras
|
| 151 |
+
)
|
| 152 |
|
| 153 |
except Exception as e:
|
| 154 |
logger.error(f"Error en interfaz principal: {str(e)}")
|
|
|
|
| 156 |
|
| 157 |
###################################3333
|
| 158 |
|
| 159 |
+
def display_results(metrics, text_type=None):
|
| 160 |
"""
|
| 161 |
+
Muestra los resultados del análisis: métricas verticalmente y gráfico radar.
|
| 162 |
+
Args:
|
| 163 |
+
metrics: Diccionario con las métricas del análisis
|
| 164 |
+
text_type: Tipo de texto (default: None)
|
| 165 |
"""
|
| 166 |
try:
|
| 167 |
+
# Usar valor por defecto si no se especifica tipo
|
| 168 |
+
text_type = text_type or 'student_essay'
|
| 169 |
+
|
| 170 |
# Obtener umbrales según el tipo de texto seleccionado
|
| 171 |
thresholds = TEXT_TYPES[text_type]['thresholds'] if text_type else {
|
| 172 |
'vocabulary': {'min': 0.60, 'target': 0.75},
|