Spaces:
Sleeping
Sleeping
| #modules/semantic/semantic_interface.py | |
| import streamlit as st | |
| from streamlit_float import * | |
| from streamlit_antd_components import * | |
| from streamlit.components.v1 import html | |
| import spacy_streamlit | |
| import io | |
| from io import BytesIO | |
| import base64 | |
| import matplotlib.pyplot as plt | |
| import pandas as pd | |
| import re | |
| import logging | |
| # Configuración del logger | |
| logger = logging.getLogger(__name__) | |
| # Importaciones locales | |
| from .semantic_process import ( | |
| process_semantic_input, | |
| format_semantic_results | |
| ) | |
| from ..utils.widget_utils import generate_unique_key | |
| from ..database.semantic_mongo_db import store_student_semantic_result | |
| from ..database.chat_mongo_db import store_chat_history, get_chat_history | |
| # from ..database.semantic_export import export_user_interactions | |
| ############################### | |
| # En semantic_interface.py | |
| def display_semantic_interface(lang_code, nlp_models, semantic_t): | |
| try: | |
| # 1. Inicializar el estado de la sesión | |
| if 'semantic_state' not in st.session_state: | |
| st.session_state.semantic_state = { | |
| 'analysis_count': 0, | |
| 'last_analysis': None, | |
| 'current_file': None, | |
| 'pending_analysis': False # Nuevo flag para controlar el análisis pendiente | |
| } | |
| # 2. Área de carga de archivo con mensaje informativo | |
| st.info(semantic_t.get('initial_instruction', | |
| 'Para comenzar un nuevo análisis semántico, cargue un archivo de texto (.txt)')) | |
| uploaded_file = st.file_uploader( | |
| semantic_t.get('semantic_file_uploader', 'Upload a text file for semantic analysis'), | |
| type=['txt'], | |
| key=f"semantic_file_uploader_{st.session_state.semantic_state['analysis_count']}" | |
| ) | |
| # 2.1 Verificar si hay un archivo cargado y un análisis pendiente | |
| if uploaded_file is not None and st.session_state.semantic_state.get('pending_analysis', False): | |
| try: | |
| with st.spinner(semantic_t.get('processing', 'Processing...')): | |
| # Realizar análisis | |
| text_content = uploaded_file.getvalue().decode('utf-8') | |
| analysis_result = process_semantic_input( | |
| text_content, | |
| lang_code, | |
| nlp_models, | |
| semantic_t | |
| ) | |
| if analysis_result['success']: | |
| # Guardar resultado | |
| st.session_state.semantic_result = analysis_result | |
| st.session_state.semantic_state['analysis_count'] += 1 | |
| st.session_state.semantic_state['current_file'] = uploaded_file.name | |
| # Guardar en base de datos | |
| storage_success = store_student_semantic_result( | |
| st.session_state.username, | |
| text_content, | |
| analysis_result['analysis'] | |
| ) | |
| if storage_success: | |
| st.success( | |
| semantic_t.get('analysis_complete', | |
| 'Análisis completado y guardado. Para realizar un nuevo análisis, cargue otro archivo.') | |
| ) | |
| else: | |
| st.error(semantic_t.get('error_message', 'Error saving analysis')) | |
| else: | |
| st.error(analysis_result['message']) | |
| # Restablecer el flag de análisis pendiente | |
| st.session_state.semantic_state['pending_analysis'] = False | |
| except Exception as e: | |
| logger.error(f"Error en análisis semántico: {str(e)}") | |
| st.error(semantic_t.get('error_processing', f'Error processing text: {str(e)}')) | |
| # Restablecer el flag de análisis pendiente en caso de error | |
| st.session_state.semantic_state['pending_analysis'] = False | |
| # 3. Columnas para los botones y mensajes | |
| col1, col2 = st.columns([1,4]) | |
| # 4. Botón de análisis | |
| with col1: | |
| analyze_button = st.button( | |
| semantic_t.get('semantic_analyze_button', 'Analyze'), | |
| key=f"semantic_analyze_button_{st.session_state.semantic_state['analysis_count']}", | |
| type="primary", | |
| icon="🔍", | |
| disabled=uploaded_file is None, | |
| use_container_width=True | |
| ) | |
| # 5. Procesar análisis | |
| if analyze_button and uploaded_file is not None: | |
| # En lugar de realizar el análisis inmediatamente, establecer el flag | |
| st.session_state.semantic_state['pending_analysis'] = True | |
| # Forzar la recarga de la aplicación | |
| st.rerun() | |
| # 6. Mostrar resultados previos o mensaje inicial | |
| elif 'semantic_result' in st.session_state and st.session_state.semantic_result is not None: | |
| # Mostrar mensaje sobre el análisis actual | |
| st.info( | |
| semantic_t.get('current_analysis_message', | |
| 'Mostrando análisis del archivo: {}. Para realizar un nuevo análisis, cargue otro archivo.' | |
| ).format(st.session_state.semantic_state["current_file"]) | |
| ) | |
| display_semantic_results( | |
| st.session_state.semantic_result, | |
| lang_code, | |
| semantic_t | |
| ) | |
| else: | |
| st.info(semantic_t.get('upload_prompt', 'Cargue un archivo para comenzar el análisis')) | |
| except Exception as e: | |
| logger.error(f"Error general en interfaz semántica: {str(e)}") | |
| st.error(semantic_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo.")) | |
| ####################################### | |
| def display_semantic_results(semantic_result, lang_code, semantic_t): | |
| """ | |
| Muestra los resultados del análisis semántico de conceptos clave. | |
| """ | |
| if semantic_result is None or not semantic_result['success']: | |
| st.warning(semantic_t.get('no_results', 'No results available')) | |
| return | |
| analysis = semantic_result['analysis'] | |
| # Mostrar conceptos clave en formato horizontal (se mantiene igual) | |
| st.subheader(semantic_t.get('key_concepts', 'Key Concepts')) | |
| if 'key_concepts' in analysis and analysis['key_concepts']: | |
| df = pd.DataFrame( | |
| analysis['key_concepts'], | |
| columns=[ | |
| semantic_t.get('concept', 'Concept'), | |
| semantic_t.get('frequency', 'Frequency') | |
| ] | |
| ) | |
| st.write( | |
| """ | |
| <style> | |
| .concept-table { | |
| display: flex; | |
| flex-wrap: wrap; | |
| gap: 10px; | |
| margin-bottom: 20px; | |
| } | |
| .concept-item { | |
| background-color: #f0f2f6; | |
| border-radius: 5px; | |
| padding: 8px 12px; | |
| display: flex; | |
| align-items: center; | |
| gap: 8px; | |
| } | |
| .concept-name { | |
| font-weight: bold; | |
| } | |
| .concept-freq { | |
| color: #666; | |
| font-size: 0.9em; | |
| } | |
| </style> | |
| <div class="concept-table"> | |
| """ + | |
| ''.join([ | |
| f'<div class="concept-item"><span class="concept-name">{concept}</span>' | |
| f'<span class="concept-freq">({freq:.2f})</span></div>' | |
| for concept, freq in df.values | |
| ]) + | |
| "</div>", | |
| unsafe_allow_html=True | |
| ) | |
| else: | |
| st.info(semantic_t.get('no_concepts', 'No key concepts found')) | |
| # Gráfico de conceptos (versión modificada) | |
| if 'concept_graph' in analysis and analysis['concept_graph'] is not None: | |
| try: | |
| # Sección del gráfico (sin div contenedor) | |
| st.image( | |
| analysis['concept_graph'], | |
| use_container_width=True | |
| ) | |
| # --- SOLO ESTE BLOQUE ES NUEVO --- | |
| st.markdown(""" | |
| <style> | |
| div[data-testid="stExpander"] div[role="button"] p { | |
| text-align: center; | |
| font-weight: bold; | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| # --------------------------------- | |
| # Expandible con la interpretación (se mantiene igual) | |
| with st.expander("📊 " + semantic_t.get('semantic_graph_interpretation', "Interpretación del gráfico semántico")): | |
| st.markdown(f""" | |
| - 🔀 {semantic_t.get('semantic_arrow_meaning', 'Las flechas indican la dirección de la relación entre conceptos')} | |
| - 🎨 {semantic_t.get('semantic_color_meaning', 'Los colores más intensos indican conceptos más centrales en el texto')} | |
| - ⭕ {semantic_t.get('semantic_size_meaning', 'El tamaño de los nodos representa la frecuencia del concepto')} | |
| - ↔️ {semantic_t.get('semantic_thickness_meaning', 'El grosor de las líneas indica la fuerza de la conexión')} | |
| """) | |
| # Contenedor para botones (se mantiene igual pero centrado) | |
| st.markdown(""" | |
| <style> | |
| .download-btn-container { | |
| display: flex; | |
| justify-content: center; | |
| margin-top: 10px; | |
| } | |
| </style> | |
| <div class="download-btn-container"> | |
| """, unsafe_allow_html=True) | |
| st.download_button( | |
| label="📥 " + semantic_t.get('download_semantic_network_graph', "Descargar gráfico de red semántica"), | |
| data=analysis['concept_graph'], | |
| file_name="semantic_graph.png", | |
| mime="image/png", | |
| use_container_width=True | |
| ) | |
| st.markdown("</div>", unsafe_allow_html=True) | |
| except Exception as e: | |
| logger.error(f"Error displaying graph: {str(e)}") | |
| st.error(semantic_t.get('graph_error', 'Error displaying the graph')) | |
| else: | |
| st.info(semantic_t.get('no_graph', 'No concept graph available')) | |