Spaces:
Running
Running
| import gradio as gr | |
| from huggingface_hub import HfApi | |
| from huggingface_hub.hf_api import ModelInfo | |
| import os | |
| import datetime | |
| OWNER = "EnergyStarAI" | |
| COMPUTE_SPACE = f"{OWNER}/launch-computation-example" | |
| REQUESTS_DATASET_PATH = f"{OWNER}/requests_debug" | |
| TOKEN = os.environ.get("DEBUG") | |
| API = HfApi(token=TOKEN) | |
| ## All the model information that we might need | |
| class ModelDetails: | |
| name: str | |
| display_name: str = "" | |
| symbol: str = "" # emoji | |
| class ModelType(Enum): | |
| PT = ModelDetails(name="pretrained", symbol="π’") | |
| FT = ModelDetails(name="fine-tuned", symbol="πΆ") | |
| IFT = ModelDetails(name="instruction-tuned", symbol="β") | |
| RL = ModelDetails(name="RL-tuned", symbol="π¦") | |
| Unknown = ModelDetails(name="", symbol="?") | |
| def to_str(self, separator=" "): | |
| return f"{self.value.symbol}{separator}{self.value.name}" | |
| def from_str(type): | |
| if "fine-tuned" in type or "πΆ" in type: | |
| return ModelType.FT | |
| if "pretrained" in type or "π’" in type: | |
| return ModelType.PT | |
| if "RL-tuned" in type or "π¦" in type: | |
| return ModelType.RL | |
| if "instruction-tuned" in type or "β" in type: | |
| return ModelType.IFT | |
| return ModelType.Unknown | |
| def update(name): | |
| API.restart_space(COMPUTE_SPACE) | |
| return f"Okay! {COMPUTE_SPACE} should be running now!" | |
| def get_model_size(model_info: ModelInfo, precision: str): | |
| """Gets the model size from the configuration, or the model name if the configuration does not contain the information.""" | |
| try: | |
| model_size = round(model_info.safetensors["total"] / 1e9, 3) | |
| except (AttributeError, TypeError): | |
| return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py | |
| size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1 | |
| model_size = size_factor * model_size | |
| return model_size | |
| def add_new_eval( | |
| repo_id: str, | |
| base_model: str, | |
| revision: str, | |
| precision: str, | |
| weight_type: str, | |
| model_type: str, | |
| ): | |
| model_owner = repo_id.split("/")[0] | |
| model_name = repo_id.split("/")[1] | |
| precision = precision.split(" ")[0] | |
| out_dir = f"{EVAL_REQUESTS_PATH}/{model_owner}" | |
| print("Making Dataset directory to output results at %s" % out_dir) | |
| os.makedirs(out_dir, exist_ok=True) | |
| out_path = f"{EVAL_REQUESTS_PATH}/{model_owner}/{model_name}_eval_request_{precision}_{weight_type}.json" | |
| current_time = datetime.now(datetime.timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") | |
| #if model_type is None or model_type == "": | |
| # return styled_error("Please select a model type.") | |
| # Does the model actually exist? | |
| #if revision == "": | |
| revision = "main" | |
| # Is the model on the hub? | |
| #if weight_type in ["Delta", "Adapter"]: | |
| # base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True) | |
| # if not base_model_on_hub: | |
| # return styled_error(f'Base model "{base_model}" {error}') | |
| #if not weight_type == "Adapter": | |
| # model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True) | |
| # if not model_on_hub: | |
| # return styled_error(f'Model "{model}" {error}') | |
| # Is the model info correctly filled? | |
| try: | |
| model_info = API.model_info(repo_id=repo_id, revision=revision) | |
| except Exception: | |
| print("Could not find information for model %s at revision %s" % (model, revision)) | |
| return | |
| # return styled_error("Could not get your model information. Please fill it up properly.") | |
| model_size = get_model_size(model_info=model_info, precision=precision) | |
| # Were the model card and license filled? | |
| #try: | |
| # license = model_info.cardData["license"] | |
| #except Exception: | |
| # return styled_error("Please select a license for your model") | |
| #modelcard_OK, error_msg = check_model_card(model) | |
| #if not modelcard_OK: | |
| # return styled_error(error_msg) | |
| # Seems good, creating the eval | |
| print("Adding request") | |
| request_entry = { | |
| "model": repo_id, | |
| "base_model": base_model, | |
| "revision": revision, | |
| "precision": precision, | |
| "weight_type": weight_type, | |
| "status": "PENDING", | |
| "submitted_time": current_time, | |
| "model_type": model_type, | |
| "likes": model_info.likes, | |
| "params": model_size} | |
| #"license": license, | |
| #"private": False, | |
| #} | |
| # Check for duplicate submission | |
| #if f"{model}_{revision}_{precision}" in REQUESTED_MODELS: | |
| # return styled_warning("This model has been already submitted.") | |
| print("Writing out request file to %s" % out_path) | |
| with open(out_path, "w") as f: | |
| f.write(json.dumps(eval_entry)) | |
| with gr.Blocks() as demo: | |
| gr.Markdown("This is a super basic example 'frontend'. Start typing below and then click **Run** to launch the job.") | |
| gr.Markdown("The job will be launched at [EnergyStarAI/launch-computation-example](https://huggingface.co/spaces/EnergyStarAI/launch-computation-example)") | |
| with gr.Row(): | |
| gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_name_textbox = gr.Textbox(label="Model name") | |
| revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | |
| model_type = gr.Dropdown( | |
| choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], | |
| label="Model type", | |
| multiselect=False, | |
| value=None, | |
| interactive=True, | |
| ) | |
| with gr.Column(): | |
| precision = gr.Dropdown( | |
| choices=[i.value.name for i in Precision if i != Precision.Unknown], | |
| label="Precision", | |
| multiselect=False, | |
| value="float16", | |
| interactive=True, | |
| ) | |
| weight_type = gr.Dropdown( | |
| choices=[i.value.name for i in WeightType], | |
| label="Weights type", | |
| multiselect=False, | |
| value="Original", | |
| interactive=True, | |
| ) | |
| base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") | |
| submit_button = gr.Button("Run Analysis") | |
| submission_result = gr.Markdown() | |
| submit_button.click( | |
| fn=add_new_eval, | |
| inputs=[ | |
| model_name_textbox, | |
| base_model_name_textbox, | |
| revision_name_textbox, | |
| precision, | |
| weight_type, | |
| model_type, | |
| ], | |
| outputs=submission_result, | |
| ) | |
| demo.launch() |