Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,471 Bytes
e47dfe1 c3e9c46 e47dfe1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import subprocess
subprocess.run('pip install flash-attn==2.7.0.post2 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
import spaces
import argparse
import os
import re
from typing import List, Optional, Tuple
import gradio as gr
import PIL.Image
import torch
import numpy as np
from moviepy.editor import VideoFileClip
from transformers import AutoModelForCausalLM
# --- Global Model Variable ---
# model = None
# This should point to the directory containing your SVG file.
CUR_DIR = os.path.dirname(os.path.abspath(__file__))
# --- Helper Functions ---
def load_video_frames(video_path: Optional[str], n_frames: int = 8) -> Optional[List[PIL.Image.Image]]:
"""Extracts a specified number of frames from a video file."""
if not video_path:
return None
try:
with VideoFileClip(video_path) as clip:
total_frames = int(clip.fps * clip.duration)
if total_frames <= 0: return None
num_to_extract = min(n_frames, total_frames)
indices = np.linspace(0, total_frames - 1, num_to_extract, dtype=int)
frames = [PIL.Image.fromarray(clip.get_frame(index / clip.fps)) for index in indices]
return frames
except Exception as e:
print(f"Error processing video {video_path}: {e}")
return None
def parse_model_output(response_text: str, enable_thinking: bool) -> str:
"""Formats the model output, separating 'thinking' and 'response' parts if enabled."""
if enable_thinking:
think_match = re.search(r"<think>(.*?)</think>", response_text, re.DOTALL)
if think_match:
thinking_content = think_match.group(1).strip()
response_content = re.sub(r"<think>.*?</think>", "", response_text, flags=re.DOTALL).strip()
return f"**Thinking:**\n```\n{thinking_content}\n```\n\n**Response:**\n{response_content}"
else:
return response_text
else:
return response_text
# --- Core Inference Logic ---
@spaces.GPU
def run_inference(
image_input: Optional[PIL.Image.Image],
video_input: Optional[str],
prompt: str,
do_sample: bool,
max_new_tokens: int,
enable_thinking: bool,
) -> List[List[str]]:
"""Runs a single turn of inference and formats the output for a gr.Chatbot."""
if (not image_input and not video_input and not prompt) or not prompt:
gr.Warning("A text prompt is required for generation.")
return []
content = []
if image_input:
content.append({"type": "image", "image": image_input})
if video_input:
frames = load_video_frames(video_input)
if frames: content.append({"type": "video", "video": frames})
else:
gr.Warning("Failed to process the video file.")
return [[prompt, "Error: Could not process the video file."]]
content.append({"type": "text", "text": prompt})
messages = [{"role": "user", "content": content}]
try:
if video_input:
input_ids, pixel_values, grid_thws = model.preprocess_inputs(messages=messages, add_generation_prompt=True, enable_thinking=enable_thinking, max_pixels=896*896)
else:
input_ids, pixel_values, grid_thws = model.preprocess_inputs(messages=messages, add_generation_prompt=True, enable_thinking=enable_thinking)
except Exception as e:
return [[prompt, f"Error during input preprocessing: {e}"]]
input_ids = input_ids.to(model.device)
if pixel_values is not None:
pixel_values = pixel_values.to(model.device, dtype=torch.bfloat16)
if grid_thws is not None:
grid_thws = grid_thws.to(model.device)
gen_kwargs = {
"max_new_tokens": max_new_tokens, "do_sample": do_sample,
"eos_token_id": model.text_tokenizer.eos_token_id, "pad_token_id": model.text_tokenizer.pad_token_id
}
with torch.inference_mode():
try:
outputs = model.generate(inputs=input_ids, pixel_values=pixel_values, grid_thws=grid_thws, **gen_kwargs)
except Exception as e:
return [[prompt, f"Error during model generation: {e}"]]
response_text = model.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
formatted_response = parse_model_output(response_text, enable_thinking)
return [[prompt, formatted_response]]
# --- UI Helper Functions ---
def toggle_media_input(choice: str) -> Tuple:
"""Switches visibility between Image/Video inputs and their corresponding examples."""
if choice == "Image":
return gr.update(visible=True, value=None), gr.update(visible=False, value=None), gr.update(visible=True), gr.update(visible=False)
else: # Video
return gr.update(visible=False, value=None), gr.update(visible=True, value=None), gr.update(visible=False), gr.update(visible=True)
# --- Build Gradio Application ---
# @spaces.GPU
def build_demo(model_path: str):
"""Builds the Gradio user interface for the model."""
global model
device = f"cuda"
print(f"Loading model {model_path} onto device {device}...")
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.bfloat16, trust_remote_code=True
).to(device).eval()
print("Model loaded successfully.")
model_name_display = model_path.split('/')[-1]
# --- Logo & Header ---
logo_html = ""
logo_svg_path = os.path.join(CUR_DIR, "resource", "logo.svg")
if os.path.exists(logo_svg_path):
with open(logo_svg_path, "r", encoding="utf-8") as svg_file:
svg_content = svg_file.read()
font_size = "2.5em"
svg_content_styled = re.sub(r'(<svg[^>]*)(>)', rf'\1 height="{font_size}" style="vertical-align: middle; display: inline-block;"\2', svg_content)
logo_html = f'<span style="display: inline-block; vertical-align: middle;">{svg_content_styled}</span>'
else:
# Fallback if SVG is not found
logo_html = '<span style="font-weight: bold; font-size: 2.5em; display: inline-block; vertical-align: middle;">Ovis</span>'
print(f"Warning: Logo file not found at {logo_svg_path}. Using text fallback.")
html_header = f"""
<p align="center" style="font-size: 2.5em; line-height: 1;">
{logo_html}
<span style="display: inline-block; vertical-align: middle;">{model_name_display}</span>
</p>
<center><font size=3><b>Ovis</b> has been open-sourced on <a href='https://huggingface.co/{model_path}'>😊 Huggingface</a> and <a href='https://github.com/AIDC-AI/Ovis'>🌟 GitHub</a>. If you find Ovis useful, a like❤️ or a star🌟 would be appreciated.</font></center>
"""
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
gr.HTML(html_header)
gr.Markdown(f"This interface is served by a single model. Each submission starts a new, independent conversation.")
with gr.Row():
# --- Left Column (Media Inputs, Settings, Prompt & Actions) ---
with gr.Column(scale=4):
input_type_radio = gr.Radio(choices=["Image"], value="Image", label="Select Input Type")
image_input = gr.Image(label="Image Input", type="pil", visible=True)
video_input = gr.Video(label="Video Input", visible=False)
with gr.Accordion("Generation Settings", open=True):
do_sample = gr.Checkbox(label="Enable Sampling (Do Sample)", value=False)
max_new_tokens = gr.Slider(minimum=32, maximum=4096, value=1024, step=32, label="Max New Tokens")
enable_thinking = gr.Checkbox(label="Enable Deep Thinking", value=True)
prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your text here and press ENTER", lines=3)
with gr.Row():
generate_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
with gr.Column(visible=True) as image_examples_col:
gr.Examples(
examples=[
[os.path.join(CUR_DIR, "examples", "ovis2_math0.jpg"), "Each face of the polyhedron shown is either a triangle or a square. Each square borders 4 triangles, and each triangle borders 3 squares. The polyhedron has 6 squares. How many triangles does it have?\n\nEnd your response with 'Final answer: '."],
[os.path.join(CUR_DIR, "examples", "ovis2_math1.jpg"), "A large square touches another two squares, as shown in the picture. The numbers inside the smaller squares indicate their areas. What is the area of the largest square?\n\nEnd your response with 'Final answer: '."],
[os.path.join(CUR_DIR, "examples", "ovis2_figure0.png"), "Explain this model."],
[os.path.join(CUR_DIR, "examples", "ovis2_figure1.png"), "Organize the notes about GRPO in the figure."],
[os.path.join(CUR_DIR, "examples", "ovis2_multi0.jpg"), "Posso avere un frappuccino e un caffè americano di taglia M? Quanto costa in totale?"],
],
inputs=[image_input, prompt_input]
)
# with gr.Column(visible=False) as video_examples_col:
# gr.Examples(examples=[[os.path.join(CUR_DIR, "examples", "video_demo_1.mp4"), "Describe the video."]],
# inputs=[video_input, prompt_input])
# --- Right Column (Chat Display) ---
with gr.Column(scale=6):
chatbot = gr.Chatbot(label="Ovis", height=750, show_copy_button=True, layout="panel")
# --- Event Handlers ---
input_type_radio.change(
fn=toggle_media_input,
inputs=input_type_radio,
outputs=[image_input, video_input, image_examples_col]
)
run_inputs = [image_input, video_input, prompt_input, do_sample, max_new_tokens, enable_thinking]
generate_btn.click(fn=run_inference, inputs=run_inputs, outputs=chatbot)
prompt_input.submit(fn=run_inference, inputs=run_inputs, outputs=chatbot)
clear_btn.click(
fn=lambda: ([], None, None, "", "Image", False, 1024, True),
outputs=[chatbot, image_input, video_input, prompt_input, input_type_radio, do_sample, max_new_tokens, enable_thinking]
).then(
fn=toggle_media_input,
inputs=input_type_radio,
outputs=[image_input, video_input, image_examples_col]
)
return demo
# --- Main Execution Block ---
# def parse_args():
# parser = argparse.ArgumentParser(description="Gradio interface for a single Multimodal Large Language Model.")
# parser.add_argument("--model-path", type=str, default='AIDC-AI/Ovis2.5-2B', help="Path to the model checkpoint on Hugging Face Hub or local directory.")
# parser.add_argument("--gpu", type=int, default=0, help="GPU index to run the model on.")
# parser.add_argument("--port", type=int, default=7860, help="Port to run the Gradio server on.")
# parser.add_argument("--server-name", type=str, default="0.0.0.0", help="Server name for the Gradio app.")
# return parser.parse_args()
# if __name__ == "__main__":
# if not os.path.exists("examples"): os.makedirs("examples")
# if not os.path.exists("resource"): os.makedirs("resource")
# print("Note: For the logo to display correctly, place 'logo.svg' inside the 'resource' directory.")
# example_files = [
# "ovis2_math0.jpg",
# "ovis2_math1.jpg",
# "ovis2_figure0.png",
# "ovis2_figure1.png",
# "ovis2_multi0.jpg",
# "video_demo_1.mp4",
# ]
# for fname in example_files:
# fpath = os.path.join("examples", fname)
# if not os.path.exists(fpath):
# if fname.endswith(".mp4"):
# os.system(f'ffmpeg -y -f lavfi -i "smptebars=size=128x72:rate=10" -t 3 -pix_fmt yuv420p "{fpath}" >/dev/null 2>&1')
# else:
# PIL.Image.new('RGB', (224, 224), color = 'grey').save(fpath)
model_path = 'AIDC-AI/Ovis2.5-2B'
demo = build_demo(model_path=model_path)
# print(f"Launching Gradio app on http://{args.server_name}:{args.port}")
# demo.queue().launch(server_name=args.server_name, server_port=args.port, share=False, ssl_verify=False)
demo.launch() |