File size: 12,471 Bytes
e47dfe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3e9c46
 
e47dfe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import subprocess
subprocess.run('pip install flash-attn==2.7.0.post2 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

import spaces


import argparse
import os
import re
from typing import List, Optional, Tuple

import gradio as gr
import PIL.Image
import torch
import numpy as np
from moviepy.editor import VideoFileClip
from transformers import AutoModelForCausalLM

# --- Global Model Variable ---
# model = None
# This should point to the directory containing your SVG file.
CUR_DIR = os.path.dirname(os.path.abspath(__file__))

# --- Helper Functions ---

def load_video_frames(video_path: Optional[str], n_frames: int = 8) -> Optional[List[PIL.Image.Image]]:
    """Extracts a specified number of frames from a video file."""
    if not video_path:
        return None
    try:
        with VideoFileClip(video_path) as clip:
            total_frames = int(clip.fps * clip.duration)
            if total_frames <= 0: return None
            num_to_extract = min(n_frames, total_frames)
            indices = np.linspace(0, total_frames - 1, num_to_extract, dtype=int)
            frames = [PIL.Image.fromarray(clip.get_frame(index / clip.fps)) for index in indices]
        return frames
    except Exception as e:
        print(f"Error processing video {video_path}: {e}")
        return None

def parse_model_output(response_text: str, enable_thinking: bool) -> str:
    """Formats the model output, separating 'thinking' and 'response' parts if enabled."""
    if enable_thinking:
        think_match = re.search(r"<think>(.*?)</think>", response_text, re.DOTALL)
        if think_match:
            thinking_content = think_match.group(1).strip()
            response_content = re.sub(r"<think>.*?</think>", "", response_text, flags=re.DOTALL).strip()
            return f"**Thinking:**\n```\n{thinking_content}\n```\n\n**Response:**\n{response_content}"
        else:
            return response_text
    else:
        return response_text

# --- Core Inference Logic ---
@spaces.GPU
def run_inference(
    image_input: Optional[PIL.Image.Image],
    video_input: Optional[str],
    prompt: str,
    do_sample: bool,
    max_new_tokens: int,
    enable_thinking: bool,
) -> List[List[str]]:
    """Runs a single turn of inference and formats the output for a gr.Chatbot."""
    if (not image_input and not video_input and not prompt) or not prompt:
        gr.Warning("A text prompt is required for generation.")
        return []

    content = []
    if image_input:
        content.append({"type": "image", "image": image_input})
    if video_input:
        frames = load_video_frames(video_input)
        if frames: content.append({"type": "video", "video": frames})
        else:
            gr.Warning("Failed to process the video file.")
            return [[prompt, "Error: Could not process the video file."]]
            
    content.append({"type": "text", "text": prompt})

    messages = [{"role": "user", "content": content}]

    try:
        if video_input:
            input_ids, pixel_values, grid_thws = model.preprocess_inputs(messages=messages, add_generation_prompt=True, enable_thinking=enable_thinking, max_pixels=896*896)
        else:
            input_ids, pixel_values, grid_thws = model.preprocess_inputs(messages=messages, add_generation_prompt=True, enable_thinking=enable_thinking)
    except Exception as e:
        return [[prompt, f"Error during input preprocessing: {e}"]]

    input_ids = input_ids.to(model.device)
    if pixel_values is not None:
        pixel_values = pixel_values.to(model.device, dtype=torch.bfloat16)
    if grid_thws is not None:
        grid_thws = grid_thws.to(model.device)

    gen_kwargs = {
        "max_new_tokens": max_new_tokens, "do_sample": do_sample,
        "eos_token_id": model.text_tokenizer.eos_token_id, "pad_token_id": model.text_tokenizer.pad_token_id
    }
    
    with torch.inference_mode():
        try:
            outputs = model.generate(inputs=input_ids, pixel_values=pixel_values, grid_thws=grid_thws, **gen_kwargs)
        except Exception as e:
            return [[prompt, f"Error during model generation: {e}"]]

    response_text = model.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
    formatted_response = parse_model_output(response_text, enable_thinking)
    
    return [[prompt, formatted_response]]


# --- UI Helper Functions ---
def toggle_media_input(choice: str) -> Tuple:
    """Switches visibility between Image/Video inputs and their corresponding examples."""
    if choice == "Image":
        return gr.update(visible=True, value=None), gr.update(visible=False, value=None), gr.update(visible=True), gr.update(visible=False)
    else: # Video
        return gr.update(visible=False, value=None), gr.update(visible=True, value=None), gr.update(visible=False), gr.update(visible=True)


# --- Build Gradio Application ---
# @spaces.GPU
def build_demo(model_path: str):
    """Builds the Gradio user interface for the model."""
    global model
    device = f"cuda"
    print(f"Loading model {model_path} onto device {device}...")
    
    model = AutoModelForCausalLM.from_pretrained(
        model_path, torch_dtype=torch.bfloat16, trust_remote_code=True
    ).to(device).eval()

    print("Model loaded successfully.")

    model_name_display = model_path.split('/')[-1]
    
    # --- Logo & Header ---
    logo_html = ""
    logo_svg_path = os.path.join(CUR_DIR, "resource", "logo.svg")
    if os.path.exists(logo_svg_path):
        with open(logo_svg_path, "r", encoding="utf-8") as svg_file:
            svg_content = svg_file.read()
        font_size = "2.5em"
        svg_content_styled = re.sub(r'(<svg[^>]*)(>)', rf'\1 height="{font_size}" style="vertical-align: middle; display: inline-block;"\2', svg_content)
        logo_html = f'<span style="display: inline-block; vertical-align: middle;">{svg_content_styled}</span>'
    else:
        # Fallback if SVG is not found
        logo_html = '<span style="font-weight: bold; font-size: 2.5em; display: inline-block; vertical-align: middle;">Ovis</span>'
        print(f"Warning: Logo file not found at {logo_svg_path}. Using text fallback.")

    html_header = f"""
    <p align="center" style="font-size: 2.5em; line-height: 1;">
        {logo_html}
        <span style="display: inline-block; vertical-align: middle;">{model_name_display}</span>
    </p>
    <center><font size=3><b>Ovis</b> has been open-sourced on <a href='https://huggingface.co/{model_path}'>😊 Huggingface</a> and <a href='https://github.com/AIDC-AI/Ovis'>🌟 GitHub</a>. If you find Ovis useful, a like❤️ or a star🌟 would be appreciated.</font></center>
    """

    with gr.Blocks(theme=gr.themes.Ocean()) as demo:
        gr.HTML(html_header)
        gr.Markdown(f"This interface is served by a single model. Each submission starts a new, independent conversation.")
        
        with gr.Row():
            # --- Left Column (Media Inputs, Settings, Prompt & Actions) ---
            with gr.Column(scale=4):
                input_type_radio = gr.Radio(choices=["Image"], value="Image", label="Select Input Type")
                image_input = gr.Image(label="Image Input", type="pil", visible=True)
                video_input = gr.Video(label="Video Input", visible=False)
                
                with gr.Accordion("Generation Settings", open=True):
                    do_sample = gr.Checkbox(label="Enable Sampling (Do Sample)", value=False)
                    max_new_tokens = gr.Slider(minimum=32, maximum=4096, value=1024, step=32, label="Max New Tokens")
                    enable_thinking = gr.Checkbox(label="Enable Deep Thinking", value=True)

                prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your text here and press ENTER", lines=3)
                with gr.Row():
                    generate_btn = gr.Button("Send", variant="primary")
                    clear_btn = gr.Button("Clear", variant="secondary")

                with gr.Column(visible=True) as image_examples_col:
                    gr.Examples(
                        examples=[
                            [os.path.join(CUR_DIR, "examples", "ovis2_math0.jpg"), "Each face of the polyhedron shown is either a triangle or a square. Each square borders 4 triangles, and each triangle borders 3 squares. The polyhedron has 6 squares. How many triangles does it have?\n\nEnd your response with 'Final answer: '."],
                            [os.path.join(CUR_DIR, "examples", "ovis2_math1.jpg"), "A large square touches another two squares, as shown in the picture. The numbers inside the smaller squares indicate their areas. What is the area of the largest square?\n\nEnd your response with 'Final answer: '."],
                            [os.path.join(CUR_DIR, "examples", "ovis2_figure0.png"), "Explain this model."],
                            [os.path.join(CUR_DIR, "examples", "ovis2_figure1.png"), "Organize the notes about GRPO in the figure."],
                            [os.path.join(CUR_DIR, "examples", "ovis2_multi0.jpg"), "Posso avere un frappuccino e un caffè americano di taglia M? Quanto costa in totale?"],
                        ],
                        inputs=[image_input, prompt_input]
                    )
                # with gr.Column(visible=False) as video_examples_col:
                #     gr.Examples(examples=[[os.path.join(CUR_DIR, "examples", "video_demo_1.mp4"), "Describe the video."]],
                #         inputs=[video_input, prompt_input])

            # --- Right Column (Chat Display) ---
            with gr.Column(scale=6):
                chatbot = gr.Chatbot(label="Ovis", height=750, show_copy_button=True, layout="panel")
        
        # --- Event Handlers ---
        input_type_radio.change(
            fn=toggle_media_input,
            inputs=input_type_radio,
            outputs=[image_input, video_input, image_examples_col]
        )
        
        run_inputs = [image_input, video_input, prompt_input, do_sample, max_new_tokens, enable_thinking]

        generate_btn.click(fn=run_inference, inputs=run_inputs, outputs=chatbot)
        prompt_input.submit(fn=run_inference, inputs=run_inputs, outputs=chatbot)
        
        clear_btn.click(
            fn=lambda: ([], None, None, "", "Image", False, 1024, True),
            outputs=[chatbot, image_input, video_input, prompt_input, input_type_radio, do_sample, max_new_tokens, enable_thinking]
        ).then(
             fn=toggle_media_input,
             inputs=input_type_radio,
             outputs=[image_input, video_input, image_examples_col]
        )
    return demo

# --- Main Execution Block ---
# def parse_args():
#     parser = argparse.ArgumentParser(description="Gradio interface for a single Multimodal Large Language Model.")
#     parser.add_argument("--model-path", type=str, default='AIDC-AI/Ovis2.5-2B', help="Path to the model checkpoint on Hugging Face Hub or local directory.")
#     parser.add_argument("--gpu", type=int, default=0, help="GPU index to run the model on.")
#     parser.add_argument("--port", type=int, default=7860, help="Port to run the Gradio server on.")
#     parser.add_argument("--server-name", type=str, default="0.0.0.0", help="Server name for the Gradio app.")
#     return parser.parse_args()

# if __name__ == "__main__":
#     if not os.path.exists("examples"): os.makedirs("examples")
#     if not os.path.exists("resource"): os.makedirs("resource")
#     print("Note: For the logo to display correctly, place 'logo.svg' inside the 'resource' directory.")

    # example_files = [
    #     "ovis2_math0.jpg",
    #     "ovis2_math1.jpg",
    #     "ovis2_figure0.png",
    #     "ovis2_figure1.png",
    #     "ovis2_multi0.jpg",
    #     "video_demo_1.mp4",
    # ]
    # for fname in example_files:
    #     fpath = os.path.join("examples", fname)
    #     if not os.path.exists(fpath):
    #         if fname.endswith(".mp4"):
    #             os.system(f'ffmpeg -y -f lavfi -i "smptebars=size=128x72:rate=10" -t 3 -pix_fmt yuv420p "{fpath}" >/dev/null 2>&1')
    #         else:
    #             PIL.Image.new('RGB', (224, 224), color = 'grey').save(fpath)


model_path = 'AIDC-AI/Ovis2.5-2B'
demo = build_demo(model_path=model_path)
# print(f"Launching Gradio app on http://{args.server_name}:{args.port}")
# demo.queue().launch(server_name=args.server_name, server_port=args.port, share=False, ssl_verify=False)
demo.launch()