Spaces:
Running
Running
File size: 10,656 Bytes
b7f29b3 41ec323 b7f29b3 7151b09 41ec323 b7f29b3 41ec323 b7f29b3 41ec323 c815695 43fdc5b c815695 43fdc5b 41ec323 43fdc5b 41ec323 0083c1a 43fdc5b 41ec323 b7f29b3 43fdc5b e00a35e 43fdc5b b7f29b3 7151b09 b7f29b3 0182410 b7f29b3 0182410 7151b09 0182410 7151b09 0182410 7151b09 b7f29b3 7151b09 0182410 b7f29b3 43fdc5b b7f29b3 7151b09 b7f29b3 43fdc5b b7f29b3 43fdc5b b7f29b3 43fdc5b 7151b09 b7f29b3 7151b09 b7f29b3 7151b09 b7f29b3 e00a35e 43fdc5b b7f29b3 41ec323 b7f29b3 e00a35e aeaa8d2 b7f29b3 43fdc5b f7dfa37 8fc985b b7f29b3 41ec323 43fdc5b b7f29b3 95ef3f6 b7f29b3 43fdc5b b7f29b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
###########################################################################################
# Title: Gradio Interface to LLM-chatbot with dynamic RAG-funcionality and ChromaDB
# Author: Andreas Fischer
# Date: October 10th, 2024
# Last update: October 12th, 2024
##########################################################################################
import os
import chromadb
from datetime import datetime
from chromadb import Documents, EmbeddingFunction, Embeddings
from chromadb.utils import embedding_functions
from transformers import AutoTokenizer, AutoModel
import torch
jina = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-de', trust_remote_code=True, torch_dtype=torch.bfloat16)
#jira.save_pretrained("jinaai_jina-embeddings-v2-base-de")
device='cuda' if torch.cuda.is_available() else 'cpu'
#device='cpu' #'cuda' if torch.cuda.is_available() else 'cpu'
jina.to(device) #cuda:0
print(device)
class JinaEmbeddingFunction(EmbeddingFunction):
def __call__(self, input: Documents) -> Embeddings:
embeddings = jina.encode(input) #max_length=2048
return(embeddings.tolist())
dbPath = "/home/af/Schreibtisch/Code/gradio/Chroma/db"
onPrem = True if(os.path.exists(dbPath)) else False
if(onPrem==False): dbPath="/home/user/app/db"
#onPrem=True # uncomment to override automatic detection
print(dbPath)
path=dbPath
client = chromadb.PersistentClient(path=path)
print(client.heartbeat())
print(client.get_version())
print(client.list_collections())
jina_ef=JinaEmbeddingFunction()
embeddingModel=jina_ef
myModel="mistralai/Mixtral-8x7b-instruct-v0.1"
#mod="mistralai/Mixtral-8x7b-instruct-v0.1"
#tok=AutoTokenizer.from_pretrained(mod) #,token="hf_...")
#cha=[{"role":"system","content":"A"},{"role":"user","content":"B"},{"role":"assistant","content":"C"}]
#cha=[{"role":"user","content":"U1"},{"role":"assistant","content":"A1"},{"role":"user","content":"U2"},{"role":"assistant","content":"A2"}]
#res=tok.apply_chat_template(cha)
#print(tok.decode(res))
def format_prompt0(message, history):
prompt = "<s>"
#for user_prompt, bot_response in history:
# prompt += f"[INST] {user_prompt} [/INST]"
# prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def format_prompt(message, history, system=None, RAGAddon=None, system2=None, zeichenlimit=None,historylimit=4, removeHTML=False):
if zeichenlimit is None: zeichenlimit=1000000000 # :-)
startOfString="<s>" #<s> [INST] U1 [/INST] A1</s> [INST] U2 [/INST] A2</s>
template0=" [INST] {system} [/INST]</s>"
template1=" [INST] {message} [/INST]"
template2=" {response}</s>"
prompt = ""
if RAGAddon is not None:
system += RAGAddon
if system is not None:
prompt += template0.format(system=system) #"<s>"
if history is not None:
for user_message, bot_response in history[-historylimit:]:
if user_message is None: user_message = ""
if bot_response is None: bot_response = ""
#bot_response = re.sub("\n\n<details>((.|\n)*?)</details>","", bot_response) # remove RAG-compontents
if removeHTML==True: bot_response = re.sub("<(.*?)>","\n", bot_response) # remove HTML-components in general (may cause bugs with markdown-rendering)
if user_message is not None: prompt += template1.format(message=user_message[:zeichenlimit])
if bot_response is not None: prompt += template2.format(response=bot_response[:zeichenlimit])
if message is not None: prompt += template1.format(message=message[:zeichenlimit])
if system2 is not None:
prompt += system2
return startOfString+prompt
from pypdf import PdfReader
import ocrmypdf
def convertPDF(pdf_file, allow_ocr=False):
reader = PdfReader(pdf_file)
full_text = ""
page_list = []
def extract_text_from_pdf(reader):
full_text = ""
page_list = []
page_count = 1
for idx, page in enumerate(reader.pages):
text = page.extract_text()
if len(text) > 0:
page_list.append(text)
#full_text += f"---- Page {idx} ----\n" + text + "\n\n"
page_count += 1
return full_text.strip(), page_count, page_list
# Check if there are any images
image_count = sum(len(page.images) for page in reader.pages)
# If there are images and not much content, perform OCR on the document
if allow_ocr:
print(f"{image_count} Images")
if image_count > 0 and len(full_text) < 1000:
out_pdf_file = pdf_file.replace(".pdf", "_ocr.pdf")
ocrmypdf.ocr(pdf_file, out_pdf_file, force_ocr=True)
reader = PdfReader(out_pdf_file)
# Extract text:
full_text, page_count, page_list = extract_text_from_pdf(reader)
l = len(page_list)
print(f"{l} Pages")
# Extract metadata
metadata = {
"author": reader.metadata.author,
"creator": reader.metadata.creator,
"producer": reader.metadata.producer,
"subject": reader.metadata.subject,
"title": reader.metadata.title,
"image_count": image_count,
"page_count": page_count,
"char_count": len(full_text),
}
return page_list, full_text, metadata
def split_with_overlap(text,chunk_size=3500, overlap=700):
chunks=[]
step=max(1,chunk_size-overlap)
for i in range(0,len(text),step):
end=min(i+chunk_size,len(text))
#chunk = text[i:i+chunk_size]
chunks.append(text[i:end])
return chunks
def add_doc(path, session):
print("def add_doc!")
print(path)
anhang=False
if(str.lower(path).endswith(".pdf") and os.path.exists(path)):
doc=convertPDF(path)
if(len(doc[0])>5):
gr.Info("PDF uploaded to DB_"+str(session)+", start Indexing excerpt (first 5 pages)!")
else:
gr.Info("PDF uploaded to DB_"+str(session)+", start Indexing!")
doc="\n\n".join(doc[0][0:5])
anhang=True
else:
gr.Info("No PDF attached - answer based on DB_"+str(session)+".")
client = chromadb.PersistentClient(path="output/general_knowledge")
print(str(client.list_collections()))
#global collection
print(str(session))
dbName="DB_"+str(session)
if(not "name="+dbName in str(client.list_collections())):
# client.delete_collection(name=dbName)
collection = client.create_collection(
name=dbName,
embedding_function=embeddingModel,
metadata={"hnsw:space": "cosine"})
else:
collection = client.get_collection(
name=dbName, embedding_function=embeddingModel)
if(anhang==True):
corpus=split_with_overlap(doc,3500,700)
print(len(corpus))
then = datetime.now()
x=collection.get(include=[])["ids"]
print(len(x))
if(len(x)==0):
chunkSize=40000
for i in range(round(len(corpus)/chunkSize+0.5)): #0 is first batch, 3 is last (incomplete) batch given 133497 texts
print("embed batch "+str(i)+" of "+str(round(len(corpus)/chunkSize+0.5)))
ids=list(range(i*chunkSize,(i*chunkSize+chunkSize)))
batch=corpus[i*chunkSize:(i*chunkSize+chunkSize)]
textIDs=[str(id) for id in ids[0:len(batch)]]
ids=[str(id+len(x)+1) for id in ids[0:len(batch)]] # id refers to chromadb-unique ID
collection.add(documents=batch, ids=ids,
metadatas=[{"date": str("2024-10-10")} for b in batch]) #"textID":textIDs, "id":ids,
print("finished batch "+str(i)+" of "+str(round(len(corpus)/40000+0.5)))
now = datetime.now()
gr.Info(f"Indexing complete!")
print(now-then) #zu viel GB für sentences (GPU), bzw. 0:00:10.375087 für chunks
return(collection)
#split_with_overlap("test me if you can",2,1)
from datetime import date
databases=[(date.today(),"0")] # list of all databases
from huggingface_hub import InferenceClient
import gradio as gr
import re
def multimodalResponse(message, history, dropdown, hfToken, request: gr.Request):
print("def multimodal response!")
if(hfToken.startswith("hf_")): # use HF-hub with custom token if token is provided
inferenceClient = InferenceClient(model=myModel, token=hfToken)
else:
inferenceClient = InferenceClient(myModel)
global databases
if request:
session=request.session_hash
else:
session="0"
length=str(len(history))
print(databases)
if(not databases[-1][1]==session):
databases.append((date.today(),session))
#print(databases)
query=message["text"]
if(len(message["files"])>0): # is there at least one file attached?
collection=add_doc(message["files"][0], session)
else: # otherwise, you still want to get the collection with the session-based db
collection=add_doc(message["text"], session)
client = chromadb.PersistentClient(path="output/general_knowledge")
print(str(client.list_collections()))
x=collection.get(include=[])["ids"]
context=collection.query(query_texts=[query], n_results=1)
context=["<context "+str(i)+"> "+str(c)+"</context "+str(i)+">" for i,c in enumerate(context["documents"][0])]
gr.Info("Kontext:\n"+str(context))
generate_kwargs = dict(
temperature=float(0.9),
max_new_tokens=5000,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
seed=42,
)
system="Mit Blick auf das folgende Gespräch und den relevanten Kontext, antworte auf die aktuelle Frage des Nutzers. "+\
"Antworte ausschließlich auf Basis der Informationen im Kontext.\n\nKontext:\n\n"+\
str("\n\n".join(context))
#"Given the following conversation, relevant context, and a follow up question, "+\
#"reply with an answer to the current question the user is asking. "+\
#"Return only your response to the question given the above information "+\
#"following the users instructions as needed.\n\nContext:"+\
print(system)
#formatted_prompt = format_prompt0(system+"\n"+query, history)
formatted_prompt = format_prompt(query, history,system=system)
print(formatted_prompt)
stream = inferenceClient.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
#output=output+"\n\n<br><details open><summary><strong>Sources</strong></summary><br>"+str(context)+"</details>"
yield output
i=gr.ChatInterface(multimodalResponse,
title="Frag dein PDF",
multimodal=True,
additional_inputs=[
gr.Dropdown(
info="select retrieval version",
choices=["1","2","3"],
value=["1"],
label="Retrieval Version"),
gr.Textbox(
value="",
label="HF_token"),
])
i.launch() #allowed_paths=["."])
|