Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,108 +1,225 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
|
|
|
|
|
|
3 |
import torch
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
)
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
do_sample=True,
|
72 |
-
|
|
|
|
|
73 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
# 4) Skip the prompt tokens and decode only the newly generated tokens
|
76 |
-
generated_tokens = outputs[0][input_ids.shape[1]:]
|
77 |
-
response = tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
78 |
-
return response
|
79 |
-
|
80 |
-
|
81 |
-
# Build a Gradio ChatInterface; sliders/textbox for system‐prompt and sampling‐params
|
82 |
-
chat_interface = gr.ChatInterface(
|
83 |
-
fn=respond,
|
84 |
-
title="FastwebMIIA‐7B Chatbot",
|
85 |
-
description="A simple chat demo using Fastweb/FastwebMIIA‐7B",
|
86 |
-
# “additional_inputs” become available above the conversation window
|
87 |
-
additional_inputs=[
|
88 |
-
gr.Textbox(
|
89 |
-
value="You are a helpful assistant.",
|
90 |
-
label="System message (role: system)"
|
91 |
-
),
|
92 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
93 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
94 |
-
gr.Slider(
|
95 |
-
minimum=0.1,
|
96 |
-
maximum=1.0,
|
97 |
-
value=0.9,
|
98 |
-
step=0.05,
|
99 |
-
label="Top-p (nucleus sampling)"
|
100 |
-
),
|
101 |
-
],
|
102 |
-
# You can tweak CSS or theme here if you like; omitted for brevity.
|
103 |
-
)
|
104 |
|
105 |
if __name__ == "__main__":
|
106 |
-
#
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import huggingface_hub
|
4 |
+
import os
|
5 |
import torch
|
6 |
+
|
7 |
+
# --- Configuration ---
|
8 |
+
MODEL_ID = "Fastweb/FastwebMIIA-7B"
|
9 |
+
HF_TOKEN = os.getenv("HF_TOKEN") # For Hugging Face Spaces, set this as a Secret
|
10 |
+
|
11 |
+
# Global variable to store the pipeline
|
12 |
+
text_generator_pipeline = None
|
13 |
+
model_load_error = None
|
14 |
+
|
15 |
+
# --- Hugging Face Login and Model Loading ---
|
16 |
+
def load_model_and_pipeline():
|
17 |
+
global text_generator_pipeline, model_load_error
|
18 |
+
if text_generator_pipeline is not None:
|
19 |
+
return True # Already loaded
|
20 |
+
|
21 |
+
if not HF_TOKEN:
|
22 |
+
model_load_error = "Hugging Face token (HF_TOKEN) not found in Space secrets. Please add it."
|
23 |
+
print(f"ERROR: {model_load_error}")
|
24 |
+
return False
|
25 |
+
|
26 |
+
try:
|
27 |
+
print(f"Attempting to login to Hugging Face Hub with token...")
|
28 |
+
huggingface_hub.login(token=HF_TOKEN)
|
29 |
+
print("Login successful.")
|
30 |
+
|
31 |
+
print(f"Loading tokenizer for {MODEL_ID}...")
|
32 |
+
# trust_remote_code is necessary for some models that define custom architectures/code
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
34 |
+
print("Tokenizer loaded.")
|
35 |
+
|
36 |
+
print(f"Loading model {MODEL_ID}...")
|
37 |
+
# For large models, specify dtype and device_map
|
38 |
+
# device_map="auto" will try to use GPU if available, otherwise CPU
|
39 |
+
# torch_dtype="auto" or torch.bfloat16 (if supported by hardware) can save memory
|
40 |
+
# On CPU Spaces (free tier), this will be VERY slow or might OOM.
|
41 |
+
# You might need to use quantization (e.g., bitsandbytes) for CPU, but that's more complex.
|
42 |
+
model = AutoModelForCausalLM.from_pretrained(
|
43 |
+
MODEL_ID,
|
44 |
+
trust_remote_code=True,
|
45 |
+
torch_dtype="auto", # or torch.bfloat16 if on A10G or similar
|
46 |
+
device_map="auto" # "auto" is good for single/multi GPU or CPU fallback
|
47 |
+
)
|
48 |
+
print("Model loaded.")
|
49 |
+
|
50 |
+
# MIIA is an instruct/chat model, so text-generation is the appropriate task
|
51 |
+
text_generator_pipeline = pipeline(
|
52 |
+
"text-generation",
|
53 |
+
model=model,
|
54 |
+
tokenizer=tokenizer,
|
55 |
+
# device=0 if torch.cuda.is_available() else -1 # device_map handles this
|
56 |
+
)
|
57 |
+
print("Text generation pipeline created successfully.")
|
58 |
+
model_load_error = None
|
59 |
+
return True
|
60 |
+
except Exception as e:
|
61 |
+
model_load_error = f"Error loading model/pipeline: {str(e)}. Check model name, token, and Space resources (RAM/GPU)."
|
62 |
+
print(f"ERROR: {model_load_error}")
|
63 |
+
text_generator_pipeline = None # Ensure it's None on error
|
64 |
+
return False
|
65 |
+
|
66 |
+
# --- Text Analysis Function ---
|
67 |
+
def analyze_text(text_input, file_upload, custom_instruction, max_new_tokens, temperature, top_p):
|
68 |
+
global text_generator_pipeline, model_load_error
|
69 |
+
|
70 |
+
if text_generator_pipeline is None:
|
71 |
+
if model_load_error:
|
72 |
+
return f"Model not loaded. Error: {model_load_error}"
|
73 |
+
else:
|
74 |
+
return "Model is not loaded. Please ensure HF_TOKEN is set and the Space has enough resources."
|
75 |
+
|
76 |
+
content_to_analyze = ""
|
77 |
+
if file_upload is not None:
|
78 |
+
try:
|
79 |
+
# file_upload is a TemporaryFileWrapper object, .name gives the path
|
80 |
+
with open(file_upload.name, 'r', encoding='utf-8') as f:
|
81 |
+
content_to_analyze = f.read()
|
82 |
+
if not content_to_analyze.strip() and not text_input.strip(): # if file is empty and no text input
|
83 |
+
return "Uploaded file is empty and no direct text input provided. Please provide some text."
|
84 |
+
elif not content_to_analyze.strip() and text_input.strip(): # if file empty but text input has content
|
85 |
+
content_to_analyze = text_input
|
86 |
+
# If file has content, it will be used. If user also typed, file content takes precedence.
|
87 |
+
# We could add logic to concatenate or choose, but this is simpler.
|
88 |
+
|
89 |
+
except Exception as e:
|
90 |
+
return f"Error reading uploaded file: {str(e)}"
|
91 |
+
elif text_input:
|
92 |
+
content_to_analyze = text_input
|
93 |
+
else:
|
94 |
+
return "Please provide text directly or upload a document."
|
95 |
+
|
96 |
+
if not content_to_analyze.strip():
|
97 |
+
return "Input text is empty."
|
98 |
+
|
99 |
+
# FastwebMIIA is an instruct model. It expects prompts like Alpaca.
|
100 |
+
# Structure:
|
101 |
+
# Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
102 |
+
# ### Instruction:
|
103 |
+
# {your instruction}
|
104 |
+
# ### Input:
|
105 |
+
# {your text}
|
106 |
+
# ### Response:
|
107 |
+
# {model generates this}
|
108 |
+
|
109 |
+
prompt = f"""Di seguito è riportata un'istruzione che descrive un task, abbinata a un input che fornisce un contesto più ampio. Scrivi una risposta che completi la richiesta in modo appropriato.
|
110 |
+
|
111 |
+
### Istruzione:
|
112 |
+
{custom_instruction}
|
113 |
+
|
114 |
+
### Input:
|
115 |
+
{content_to_analyze}
|
116 |
+
|
117 |
+
### Risposta:"""
|
118 |
+
|
119 |
+
# For English, you might change the preamble:
|
120 |
+
# prompt = f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
121 |
+
# ### Instruction:
|
122 |
+
# {custom_instruction}
|
123 |
+
# ### Input:
|
124 |
+
# {content_to_analyze}
|
125 |
+
# ### Response:"""
|
126 |
+
|
127 |
+
|
128 |
+
print(f"\n--- Sending to Model ---")
|
129 |
+
print(f"Prompt:\n{prompt}")
|
130 |
+
print(f"Max New Tokens: {max_new_tokens}, Temperature: {temperature}, Top P: {top_p}")
|
131 |
+
print("------------------------\n")
|
132 |
+
|
133 |
+
try:
|
134 |
+
# Note: text-generation pipelines often return the prompt + completion.
|
135 |
+
# We might need to strip the prompt from the output if desired.
|
136 |
+
generated_outputs = text_generator_pipeline(
|
137 |
+
prompt,
|
138 |
+
max_new_tokens=int(max_new_tokens),
|
139 |
do_sample=True,
|
140 |
+
temperature=float(temperature) if float(temperature) > 0 else 0.7, # temp 0 means greedy
|
141 |
+
top_p=float(top_p),
|
142 |
+
num_return_sequences=1
|
143 |
)
|
144 |
+
response = generated_outputs[0]['generated_text']
|
145 |
+
|
146 |
+
# Often, the response includes the prompt. Let's try to return only the new part.
|
147 |
+
# The model should generate text after "### Risposta:"
|
148 |
+
answer_marker = "### Risposta:"
|
149 |
+
if answer_marker in response:
|
150 |
+
return response.split(answer_marker, 1)[1].strip()
|
151 |
+
else:
|
152 |
+
# Fallback if the marker isn't found (shouldn't happen with good prompting)
|
153 |
+
return response # Or you could try to remove the original prompt string
|
154 |
+
|
155 |
+
except Exception as e:
|
156 |
+
return f"Error during text generation: {str(e)}"
|
157 |
+
|
158 |
+
# --- Gradio Interface ---
|
159 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
160 |
+
gr.Markdown(f"""
|
161 |
+
# 📝 Text Analysis with {MODEL_ID}
|
162 |
+
Test the capabilities of the `{MODEL_ID}` model for text analysis tasks on Italian or English texts.
|
163 |
+
Provide an instruction and your text (directly or via upload).
|
164 |
+
**Important:** Model loading can take a few minutes, especially on the first run or on CPU.
|
165 |
+
This app is best run on a Hugging Face Space with GPU resources for this model size.
|
166 |
+
""")
|
167 |
+
|
168 |
+
with gr.Row():
|
169 |
+
status_textbox = gr.Textbox(label="Model Status", value="Attempting to load model...", interactive=False)
|
170 |
+
|
171 |
+
with gr.Tab("Text Input & Analysis"):
|
172 |
+
with gr.Row():
|
173 |
+
with gr.Column(scale=2):
|
174 |
+
instruction_prompt = gr.Textbox(
|
175 |
+
label="Instruction for the Model (e.g., 'Riassumi questo testo', 'Identify main topics', 'Translate to English')",
|
176 |
+
value="Riassumi questo testo in 3 frasi concise.",
|
177 |
+
lines=3
|
178 |
+
)
|
179 |
+
text_area_input = gr.Textbox(label="Enter Text Directly", lines=10, placeholder="Paste your text here...")
|
180 |
+
file_input = gr.File(label="Or Upload a Document (.txt)", file_types=['.txt'])
|
181 |
+
with gr.Column(scale=3):
|
182 |
+
output_text = gr.Textbox(label="Model Output", lines=20, interactive=False)
|
183 |
+
|
184 |
+
with gr.Accordion("Advanced Generation Parameters", open=False):
|
185 |
+
max_new_tokens_slider = gr.Slider(minimum=50, maximum=1024, value=256, step=10, label="Max New Tokens")
|
186 |
+
temperature_slider = gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.1, label="Temperature (higher is more creative)")
|
187 |
+
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top P (nucleus sampling)")
|
188 |
+
|
189 |
+
analyze_button = gr.Button("🧠 Analyze Text", variant="primary")
|
190 |
+
|
191 |
+
analyze_button.click(
|
192 |
+
fn=analyze_text,
|
193 |
+
inputs=[text_area_input, file_input, instruction_prompt, max_new_tokens_slider, temperature_slider, top_p_slider],
|
194 |
+
outputs=output_text
|
195 |
+
)
|
196 |
+
|
197 |
+
# Load the model when the app starts.
|
198 |
+
# This will update the status_textbox after attempting to load.
|
199 |
+
def startup_load_model():
|
200 |
+
if load_model_and_pipeline():
|
201 |
+
return "Model loaded successfully and ready."
|
202 |
+
else:
|
203 |
+
return f"Failed to load model. Error: {model_load_error or 'Unknown error during startup.'}"
|
204 |
+
|
205 |
+
demo.load(startup_load_model, outputs=status_textbox)
|
206 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
|
208 |
if __name__ == "__main__":
|
209 |
+
# For local testing (ensure HF_TOKEN is set as an environment variable or you're logged in via CLI)
|
210 |
+
# You would run: HF_TOKEN="your_hf_token_here" python app.py
|
211 |
+
# If not set, it will fail unless you've done `huggingface-cli login`
|
212 |
+
if not HF_TOKEN and "HF_TOKEN" not in os.environ:
|
213 |
+
print("WARNING: HF_TOKEN environment variable not set.")
|
214 |
+
print("For local execution, either set HF_TOKEN or ensure you are logged in via 'huggingface-cli login'.")
|
215 |
+
# Attempt to use CLI login if available
|
216 |
+
try:
|
217 |
+
HF_TOKEN = huggingface_hub.HfApi().token
|
218 |
+
if HF_TOKEN:
|
219 |
+
print("Using token from huggingface-cli login.")
|
220 |
+
else:
|
221 |
+
print("Could not retrieve token from CLI login. Model access might fail.")
|
222 |
+
except Exception as e:
|
223 |
+
print(f"Could not check CLI login status: {e}. Model access might fail.")
|
224 |
|
225 |
+
demo.queue().launch(debug=True, share=False) # share=True for public link if local
|