File size: 13,895 Bytes
ad022d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
913d475
ad022d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
913d475
ad022d3
 
 
913d475
 
ad022d3
 
 
 
 
 
 
913d475
ad022d3
 
 
 
 
 
 
 
 
 
913d475
ad022d3
 
 
 
 
 
 
 
 
 
 
 
 
 
913d475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad022d3
 
 
 
 
 
 
 
 
 
 
 
 
 
913d475
ad022d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
913d475
ad022d3
 
 
913d475
ad022d3
913d475
ad022d3
913d475
ad022d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
913d475
ad022d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
from pathlib import Path
import gradio as gr
import os
from PIL import Image
import ollama
from utility import download_video, get_transcript_vtt, extract_meta_data, lvlm_inference_with_phi, lvlm_inference_with_tiny_model, lvlm_inference_with_tiny_model
from mm_rag.embeddings.bridgetower_embeddings import (
    BridgeTowerEmbeddings
)
from mm_rag.vectorstores.multimodal_lancedb import MultimodalLanceDB
import lancedb
import json
import os
from PIL import Image
from utility import load_json_file, display_retrieved_results
import pyarrow as pa

# declare host file
LANCEDB_HOST_FILE = "./shared_data/.lancedb"
# declare table name
# initialize vectorstore
db = lancedb.connect(LANCEDB_HOST_FILE)
# initialize an BridgeTower embedder
embedder = BridgeTowerEmbeddings()
video_processed = False
base_dir = "./shared_data/videos/yt_video"
Path(base_dir).mkdir(parents=True, exist_ok=True)


def open_table(table_name):
    # open a connection to table TBL_NAME
    tbl = db.open_table(table_name)

    print(f"There are {tbl.to_pandas().shape[0]} rows in the table")
    # display the first 3 rows of the table
    tbl.to_pandas()[['text', 'image_path']].head(3)


def check_if_table_exists(table_name):
    return table_name in db.table_names()


def store_in_rag(vid_table_name, vid_metadata_path):

    # load metadata files

    vid_metadata = load_json_file(vid_metadata_path)

    vid_subs = [vid['transcript'] for vid in vid_metadata]
    vid_img_path = [vid['extracted_frame_path'] for vid in vid_metadata]

    # for video1, we pick n = 7
    n = 7
    updated_vid_subs = [
        ' '.join(vid_subs[i-int(n/2): i+int(n/2)]) if i-int(n/2) >= 0 else
        ' '.join(vid_subs[0: i + int(n/2)]) for i in range(len(vid_subs))
    ]

    # also need to update the updated transcripts in metadata
    for i in range(len(updated_vid_subs)):
        vid_metadata[i]['transcript'] = updated_vid_subs[i]

    # you can pass in mode="append"
    # to add more entries to the vector store
    # in case you want to start with a fresh vector store,
    # you can pass in mode="overwrite" instead

    print("Creating vid_table_name ", vid_table_name)
    _ = MultimodalLanceDB.from_text_image_pairs(
        texts=updated_vid_subs,
        image_paths=vid_img_path,
        embedding=embedder,
        metadatas=vid_metadata,
        connection=db,
        table_name=vid_table_name,
        mode="overwrite",
    )
    open_table(vid_table_name)

    return vid_table_name


def get_metadata_of_yt_video_with_captions(vid_url, from_gen=False):
    vid_filepath, vid_folder_path, is_downloaded = download_video(
        vid_url, base_dir)
    if is_downloaded:
        print("Video downloaded at ", vid_filepath)
    if from_gen:
        # Delete existing caption and metadata files if they exist
        caption_file = f"{vid_folder_path}/captions.vtt"
        metadata_file = f"{vid_folder_path}/metadatas.json"
        if os.path.exists(caption_file):
            os.remove(caption_file)
            print(f"Deleted existing caption file: {caption_file}")
        if os.path.exists(metadata_file):
            os.remove(metadata_file)
            print(f"Deleted existing metadata file: {metadata_file}")

    print("checking transcript")
    vid_transcript_filepath = get_transcript_vtt(
        vid_folder_path, vid_url, vid_filepath, from_gen)
    vid_metadata_path = f"{vid_folder_path}/metadatas.json"
    print("checking metadatas at", vid_metadata_path)
    if os.path.exists(vid_metadata_path):
        print('Metadatas already exists')
    else:
        print("Downloading metadatas for the video ", vid_filepath)
        # should return lowercase file name without spaces
        extract_meta_data(vid_folder_path, vid_filepath,
                          vid_transcript_filepath)

    parent_dir_name = os.path.basename(os.path.dirname(vid_metadata_path))
    vid_table_name = f"{parent_dir_name}_table"
    print("Checking db and Table name ", vid_table_name)
    if not check_if_table_exists(vid_table_name):
        print("Table does not exists Storing in RAG")
    else:
        print("Table exists")

        def delete_table(table_name):
            db.drop_table(table_name)
            print(f"Deleted table {table_name}")
        delete_table(vid_table_name)

    store_in_rag(vid_table_name, vid_metadata_path)
    return vid_filepath, vid_table_name


def return_top_k_most_similar_docs(vid_table_name, query, use_llm=False):
    if not video_processed:
        raise gr.Error("Please process the video first in Step 1")
    # Initialize results variable outside the if condition
    max_docs = 2
    print("Querying ", vid_table_name)
    vectorstore = MultimodalLanceDB(
        uri=LANCEDB_HOST_FILE,
        embedding=embedder,
        table_name=vid_table_name
    )

    retriever = vectorstore.as_retriever(
        search_type='similarity',
        search_kwargs={"k": max_docs}
    )

    # Get results first
    results = retriever.invoke(query)

    if use_llm:
        # Read captions.vtt file
        def read_vtt_file(file_path):
            with open(file_path, 'r', encoding='utf-8') as f:
                return f.read()

        vid_table_name = vid_table_name.split('_table')[0]
        caption_file = 'shared_data/videos/yt_video/' + vid_table_name + '/captions.vtt'
        print("Caption file path ", caption_file)
        captions = read_vtt_file(caption_file)
        prompt = "Answer this query : " + query + " from the content " + captions
        print("Prompt ", prompt)
        all_page_content = lvlm_inference_with_phi(prompt)
    else:
        all_page_content = "\n\n".join(
            [result.page_content for result in results])

    page_content = gr.Textbox(all_page_content, label="Response",
                              elem_id='chat-response', visible=True, interactive=False)
    image1 = Image.open(results[0].metadata['extracted_frame_path'])
    image2_path = results[1].metadata['extracted_frame_path']

    if results[0].metadata['extracted_frame_path'] == image2_path:
        image2 = gr.update(visible=False)
    else:
        image2 = Image.open(image2_path)
        image2 = gr.update(value=image2, visible=True)

    return page_content, image1, image2


def process_url_and_init(youtube_url, from_gen=False):
    global video_processed
    video_processed = True
    url_input = gr.update(visible=False)
    submit_btn = gr.update(visible=True)
    chatbox = gr.update(visible=False)
    submit_btn_whisper = gr.update(visible=False)
    frame1 = gr.update(visible=True)
    frame2 = gr.update(visible=False)
    chatbox_llm, submit_btn_chat = gr.update(
        visible=True), gr.update(visible=True)
    vid_filepath, vid_table_name = get_metadata_of_yt_video_with_captions(
        youtube_url, from_gen)
    video = gr.Video(vid_filepath, render=True)
    return url_input, submit_btn, video, vid_table_name, chatbox, submit_btn_whisper, frame1, frame2, chatbox_llm, submit_btn_chat


def test_btn():
    text = "hi"
    res = lvlm_inference_with_phi(text)
    response = gr.Textbox(res, visible=True, interactive=False)
    return response


def init_improved_ui():
    full_intro = """

            ## How it Works:

            1. πŸ“₯ Provide a YouTube URL.

            2. πŸ”„ Choose a processing method:

               - Download the video and its captions/subtitles from YouTube.

               - Download the video and generate captions using Whisper AI.

                The system will load the video in video player for preview and process the video and extract frames from it. 

                It will then pass the captions and images to the RAG model to store them in the database.

                The RAG (Lance DB) uses a pre-trained BridgeTower model to generate embeddings that provide pairs of captions and related images.

            3. πŸ€– Analyze video content through:

               - Keyword Search - Use this functionality to search for keywords in the video. Our RAG model will return the most relevant captions and images.

               - AI-powered Q&A - Use this functionality to ask questions about the video content. Our system will use the Meta/LLaMA model to analyze the captions and images and provide detailed answers.

            4. πŸ“Š Results will be displayed in the response section with related images.

            

            > **Note**: Initial processing takes several minutes. Please be patient and monitor the logs for progress updates.

            """
    intro = """

            ## How it Works:

            Step 1. πŸ“₯ A video URL.

            Step 2. πŸ”„ Process Video:

                Download the video and its captions/subtitles from YouTube OR generate captions using Whisper AI.

                The system will load the video in video player for preview and process the video and extract frames from it. 

                It will then pass the captions and images to the RAG model to store them in the database.

                The RAG (Lance DB) uses a pre-trained BridgeTower model to generate embeddings that provide pairs of captions and related images.

            Step 3. πŸ€– Analyze video content through:

               - AI-powered Q&A - Use this functionality to ask questions about the video content. Our system will use the Meta/LLaMA model to analyze the captions and images and provide detailed answers.

            Step 4. πŸ“Š Results will be displayed in the response section with related images.

            

            > **Note**: Initial processing takes several minutes. Please be patient and monitor the logs for progress updates.

            """
    with gr.Blocks(theme=gr.themes.Ocean()) as demo:
        # Header Section with Introduction
        with gr.Accordion(label=" # 🎬 Video Analysis Assistant ", open=False):
            gr.Markdown(intro)

        # Video Input Section
        with gr.Group():
            url_input = gr.Textbox(
                label="YouTube URL",
                value="https://www.youtube.com/watch?v=kOEDG3j1bjs",
                visible=True,
                interactive=False
            )
            vid_table_name = gr.Textbox(label="Table Name", visible=False)
            video = gr.Video(label="Video Preview")

            with gr.Row():
                submit_btn = gr.Button(
                    "πŸ“₯ Step 1: Process with Existing Subtitles", variant="primary")
                submit_btn_gen = gr.Button(
                    "🎯 Generate New Subtitles", variant="secondary", visible=False)

        # Analysis Tools Section
        with gr.Group():

            with gr.Row():
                chatbox = gr.Textbox(
                    label="Step 2: Search Keywords",
                    value="event horizon, black holes, space",
                    visible=False
                )
                submit_btn_whisper = gr.Button(
                    "πŸ”Ž Search",
                    visible=False,
                    variant="primary"
                )

            with gr.Row():
                chatbox_llm = gr.Textbox(
                    label="πŸ” Chat AI about the video",
                    value="What is this video about?",
                    visible=True
                )
            with gr.Row():
                submit_btn_chat = gr.Button(
                    "πŸ€– Step 2: Ask",
                    visible=True,
                    scale=1, variant="primary"
                )

        # Results Display Section
        with gr.Group():
            response = gr.Textbox(
                label="AI Response",
                visible=True,
                interactive=False
            )

            with gr.Row():
                frame1 = gr.Image(
                    visible=False, label="Related Frame 1", scale=1)
                frame2 = gr.Image(
                    visible=False, label="Related Frame 2", scale=2)

        # Control Buttons
        with gr.Row():
            reset_btn = gr.Button("πŸ”„ Step 3: Start Over", variant="primary")
            test_llama = gr.Button("πŸ§ͺ Say Hi to Llama",
                                   visible=False, variant="secondary")

        # Event Handlers
        submit_btn.click(
            fn=process_url_and_init,
            inputs=[url_input],
            outputs=[url_input, submit_btn, video, vid_table_name,
                     chatbox, submit_btn_whisper, frame1, frame2,
                     chatbox_llm, submit_btn_chat]
        )

        submit_btn_gen.click(
            fn=lambda x: process_url_and_init(x, from_gen=True),
            inputs=[url_input],
            outputs=[url_input, submit_btn, video, vid_table_name,
                     chatbox, submit_btn_whisper, frame1, frame2,
                     chatbox_llm, submit_btn_chat]
        )

        submit_btn_whisper.click(
            fn=return_top_k_most_similar_docs,
            inputs=[vid_table_name, chatbox],
            outputs=[response, frame1, frame2]
        )

        submit_btn_chat.click(
            fn=lambda table_name, query: return_top_k_most_similar_docs(
                vid_table_name=table_name,
                query=query,
                use_llm=True
            ),
            inputs=[vid_table_name, chatbox_llm],
            outputs=[response, frame1, frame2]
        )

        reset_btn.click(None, js="() => { location.reload(); }")
        test_llama.click(test_btn, None, outputs=[response])

    return demo


if __name__ == '__main__':
    demo = init_improved_ui()  # Updated function name here
    demo.launch(share=True, debug=True)