Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import requests
|
4 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
5 |
+
|
6 |
+
# ๋ฅ๋ฌ๋ ๋ชจ๋ธ ๋ก๋
|
7 |
+
@st.cache_resource
|
8 |
+
def load_model():
|
9 |
+
model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
12 |
+
return pipeline("text-classification", model=model, tokenizer=tokenizer)
|
13 |
+
|
14 |
+
# ๋ค์ด๋ฒ ๋ด์ค API ํธ์ถ
|
15 |
+
def fetch_naver_news(query, display=5):
|
16 |
+
url = "https://openapi.naver.com/v1/search/news.json"
|
17 |
+
headers = {
|
18 |
+
"X-Naver-Client-Id": "YOUR_CLIENT_ID",
|
19 |
+
"X-Naver-Client-Secret": "YOUR_CLIENT_SECRET",
|
20 |
+
}
|
21 |
+
params = {"query": query, "display": display, "sort": "sim"}
|
22 |
+
response = requests.get(url, headers=headers, params=params)
|
23 |
+
response.raise_for_status()
|
24 |
+
return response.json()
|
25 |
+
|
26 |
+
# ์ ์น ์ฑํฅ ๋ถ๋ฅ
|
27 |
+
def classify_sentiment(text, classifier):
|
28 |
+
result = classifier(text, truncation=True, max_length=512)
|
29 |
+
label = result[0]['label']
|
30 |
+
score = result[0]['score']
|
31 |
+
if label in ['LABEL_0', 'LABEL_1']:
|
32 |
+
return "๋ณด์", score
|
33 |
+
elif label in ['LABEL_4']:
|
34 |
+
return "์ง๋ณด", score
|
35 |
+
else:
|
36 |
+
return "์ค๋ฆฝ", score
|
37 |
+
|
38 |
+
# ๋ด์ค ๋ฐ์ดํฐ ๋ถ์
|
39 |
+
def analyze_news(news_items, classifier):
|
40 |
+
results = {"์ง๋ณด": 0, "๋ณด์": 0, "์ค๋ฆฝ": 0}
|
41 |
+
detailed_results = []
|
42 |
+
|
43 |
+
for item in news_items:
|
44 |
+
title = item["title"]
|
45 |
+
description = item["description"]
|
46 |
+
link = item["link"]
|
47 |
+
combined_text = f"{title}. {description}"
|
48 |
+
|
49 |
+
# ์ ์น ์ฑํฅ ๋ถ๋ฅ
|
50 |
+
orientation, score = classify_sentiment(combined_text, classifier)
|
51 |
+
results[orientation] += 1
|
52 |
+
detailed_results.append({
|
53 |
+
"์ ๋ชฉ": title,
|
54 |
+
"์์ฝ": description,
|
55 |
+
"๋งํฌ": link,
|
56 |
+
"์ฑํฅ": orientation,
|
57 |
+
"์ ์": score,
|
58 |
+
})
|
59 |
+
|
60 |
+
return results, detailed_results
|
61 |
+
|
62 |
+
# Streamlit ์ฑ ์์
|
63 |
+
st.title("์ ์น ์ฑํฅ ๋ถ์ ๋์๋ณด๋")
|
64 |
+
st.markdown("### ๋ค์ด๋ฒ ๋ด์ค ๋ฐ์ดํฐ๋ฅผ ์ค์๊ฐ์ผ๋ก ์์งํ๊ณ ์ ์น ์ฑํฅ์ ๋ถ์ํฉ๋๋ค.")
|
65 |
+
|
66 |
+
# ๊ฒ์ ํค์๋ ์
๋ ฅ
|
67 |
+
query = st.text_input("๊ฒ์ ํค์๋๋ฅผ ์
๋ ฅํ์ธ์", value="์ ์น")
|
68 |
+
|
69 |
+
if st.button("๋ถ์ ์์"):
|
70 |
+
with st.spinner("๋ฐ์ดํฐ๋ฅผ ๋ถ์ ์ค์
๋๋ค..."):
|
71 |
+
try:
|
72 |
+
# ๋ค์ด๋ฒ ๋ด์ค ๋ฐ์ดํฐ ์์ง
|
73 |
+
news_data = fetch_naver_news(query, display=10)
|
74 |
+
news_items = news_data["items"]
|
75 |
+
|
76 |
+
# ๋ชจ๋ธ ๋ก๋
|
77 |
+
classifier = load_model()
|
78 |
+
|
79 |
+
# ๋ด์ค ๋ฐ์ดํฐ ๋ถ์
|
80 |
+
results, detailed_results = analyze_news(news_items, classifier)
|
81 |
+
|
82 |
+
# ๋ถ์ ๊ฒฐ๊ณผ ์๊ฐํ
|
83 |
+
st.subheader("๋ถ์ ๊ฒฐ๊ณผ ์์ฝ")
|
84 |
+
st.write(f"์ง๋ณด: {results['์ง๋ณด']}๊ฑด")
|
85 |
+
st.write(f"๋ณด์: {results['๋ณด์']}๊ฑด")
|
86 |
+
st.write(f"์ค๋ฆฝ: {results['์ค๋ฆฝ']}๊ฑด")
|
87 |
+
|
88 |
+
# ํ์ด ์ฐจํธ
|
89 |
+
st.subheader("์ฑํฅ ๋ถํฌ ์ฐจํธ")
|
90 |
+
st.bar_chart(pd.DataFrame.from_dict(results, orient='index', columns=["๊ฑด์"]))
|
91 |
+
|
92 |
+
# ์ธ๋ถ ๊ฒฐ๊ณผ ์ถ๋ ฅ
|
93 |
+
st.subheader("์ธ๋ถ ๊ฒฐ๊ณผ")
|
94 |
+
df = pd.DataFrame(detailed_results)
|
95 |
+
st.dataframe(df)
|
96 |
+
|
97 |
+
# ๋งํฌ ํฌํจํ ๋ด์ค ์ถ๋ ฅ
|
98 |
+
st.subheader("๋ด์ค ๋งํฌ")
|
99 |
+
for index, row in df.iterrows():
|
100 |
+
st.write(f"- [{row['์ ๋ชฉ']}]({row['๋งํฌ']}) (์ฑํฅ: {row['์ฑํฅ']}, ์ ์: {row['์ ์']:.2f})")
|
101 |
+
except Exception as e:
|
102 |
+
st.error(f"์ค๋ฅ ๋ฐ์: {e}")
|