Update app.py
Browse files
app.py
CHANGED
@@ -2,11 +2,12 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
import requests
|
4 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
|
|
5 |
|
6 |
# ๋ฅ๋ฌ๋ ๋ชจ๋ธ ๋ก๋
|
7 |
@st.cache_resource
|
8 |
def load_model():
|
9 |
-
model_name = "bucketresearch/politicalBiasBERT"
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
12 |
return pipeline("text-classification", model=model, tokenizer=tokenizer)
|
@@ -15,22 +16,26 @@ def load_model():
|
|
15 |
def fetch_naver_news(query, display=5):
|
16 |
url = "https://openapi.naver.com/v1/search/news.json"
|
17 |
headers = {
|
18 |
-
"X-Naver-Client-Id": "
|
19 |
-
"X-Naver-Client-Secret": "
|
20 |
}
|
21 |
params = {"query": query, "display": display, "sort": "sim"}
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# ์ ์น ์ฑํฅ ๋ถ๋ฅ
|
27 |
def classify_sentiment(text, classifier):
|
28 |
result = classifier(text, truncation=True, max_length=512)
|
29 |
label = result[0]['label']
|
30 |
score = result[0]['score']
|
31 |
-
if label in ['LABEL_0', 'LABEL_1']:
|
32 |
return "๋ณด์", score
|
33 |
-
elif label in ['LABEL_4']:
|
34 |
return "์ง๋ณด", score
|
35 |
else:
|
36 |
return "์ค๋ฆฝ", score
|
@@ -71,6 +76,8 @@ if st.button("๋ถ์ ์์"):
|
|
71 |
try:
|
72 |
# ๋ค์ด๋ฒ ๋ด์ค ๋ฐ์ดํฐ ์์ง
|
73 |
news_data = fetch_naver_news(query, display=10)
|
|
|
|
|
74 |
news_items = news_data["items"]
|
75 |
|
76 |
# ๋ชจ๋ธ ๋ก๋
|
|
|
2 |
import pandas as pd
|
3 |
import requests
|
4 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
5 |
+
import os
|
6 |
|
7 |
# ๋ฅ๋ฌ๋ ๋ชจ๋ธ ๋ก๋
|
8 |
@st.cache_resource
|
9 |
def load_model():
|
10 |
+
model_name = "bucketresearch/politicalBiasBERT"
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
13 |
return pipeline("text-classification", model=model, tokenizer=tokenizer)
|
|
|
16 |
def fetch_naver_news(query, display=5):
|
17 |
url = "https://openapi.naver.com/v1/search/news.json"
|
18 |
headers = {
|
19 |
+
"X-Naver-Client-Id": os.getenv("NAVER_CLIENT_ID"),
|
20 |
+
"X-Naver-Client-Secret": os.getenv("NAVER_CLIENT_SECRET"),
|
21 |
}
|
22 |
params = {"query": query, "display": display, "sort": "sim"}
|
23 |
+
try:
|
24 |
+
response = requests.get(url, headers=headers, params=params)
|
25 |
+
response.raise_for_status() # HTTP ์ค๋ฅ ์ฒ๋ฆฌ
|
26 |
+
return response.json()
|
27 |
+
except requests.exceptions.RequestException as e:
|
28 |
+
st.error(f"API ํธ์ถ ์ค ์ค๋ฅ ๋ฐ์: {e}")
|
29 |
+
return None
|
30 |
|
31 |
# ์ ์น ์ฑํฅ ๋ถ๋ฅ
|
32 |
def classify_sentiment(text, classifier):
|
33 |
result = classifier(text, truncation=True, max_length=512)
|
34 |
label = result[0]['label']
|
35 |
score = result[0]['score']
|
36 |
+
if label in ['LABEL_0', 'LABEL_1']: # ๋ผ๋ฒจ์ ๋ฐ๋ผ ์์ ํ์
|
37 |
return "๋ณด์", score
|
38 |
+
elif label in ['LABEL_4']: # ๋ผ๋ฒจ์ ๋ฐ๋ผ ์์ ํ์
|
39 |
return "์ง๋ณด", score
|
40 |
else:
|
41 |
return "์ค๋ฆฝ", score
|
|
|
76 |
try:
|
77 |
# ๋ค์ด๋ฒ ๋ด์ค ๋ฐ์ดํฐ ์์ง
|
78 |
news_data = fetch_naver_news(query, display=10)
|
79 |
+
if news_data is None:
|
80 |
+
return
|
81 |
news_items = news_data["items"]
|
82 |
|
83 |
# ๋ชจ๋ธ ๋ก๋
|