import gradio as gr from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM from diffusers import StableDiffusionPipeline import torch # 1. Tamil to English Translator translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ta-en") # 2. English Text Generator (you can use GPT2 or any causal model) generator = pipeline("text-generation", model="gpt2") # 3. Image Generator using Stable Diffusion device = "cuda" if torch.cuda.is_available() else "cpu" image_pipe = StableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16 if device == "cuda" else torch.float32 ) image_pipe = image_pipe.to(device) # 👇 Combined function def generate_image_from_tamil(tamil_input): # Step 1: Translate Tamil → English translated = translator(tamil_input, max_length=100)[0]['translation_text'] # Step 2: Generate English sentence based on translated input generated = generator(translated, max_length=50, num_return_sequences=1)[0]['generated_text'] # Step 3: Generate Image based on English text image = image_pipe(generated).images[0] return translated, generated, image # 🎨 Gradio UI iface = gr.Interface( fn=generate_image_from_tamil, inputs=gr.Textbox(lines=2, label="Enter Tamil Text"), outputs=[ gr.Textbox(label="Translated English Text"), gr.Textbox(label="Generated English Prompt"), gr.Image(label="Generated Image") ], title="Tamil to Image Generator 🌅", description="Translates Tamil → English, generates story → creates image using Stable Diffusion." ) iface.launch()