import gradio as gr from transformers import MarianMTModel, MarianTokenizer, BlipProcessor, BlipForConditionalGeneration from PIL import Image import torch # Load the Tamil-to-English translation model model_name = "Helsinki-NLP/opus-mt-ta-en" tokenizer = MarianTokenizer.from_pretrained(model_name) translation_model = MarianMTModel.from_pretrained(model_name) # Load the BLIP model for image captioning caption_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") caption_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") def translate_tamil_to_english(tamil_text): inputs = tokenizer(tamil_text, return_tensors="pt", padding=True) translated = translation_model.generate(**inputs) english_text = tokenizer.decode(translated[0], skip_special_tokens=True) return english_text # Generate image using text (stub – replace with actual model if needed) def generate_image_from_text(text_prompt): # Instead of using Stable Diffusion, just show a sample image img = Image.new('RGB', (512, 512), color='lightblue') return img def describe_image(image): inputs = caption_processor(images=image, return_tensors="pt") out = caption_model.generate(**inputs) caption = caption_processor.decode(out[0], skip_special_tokens=True) return caption def full_pipeline(tamil_text): english_text = translate_tamil_to_english(tamil_text) generated_image = generate_image_from_text(english_text) description = describe_image(generated_image) return english_text, generated_image, description # Gradio interface with gr.Blocks() as demo: gr.Markdown("## Tamil to English → Image → Description") with gr.Row(): tamil_input = gr.Textbox(label="Enter Tamil Text", lines=2, placeholder="உதாரணம்: ஒரு பூந்தோட்டத்தில் செருப்புகள் இருக்கின்றன") with gr.Row(): translate_btn = gr.Button("Translate and Generate") with gr.Row(): english_output = gr.Textbox(label="Translated English Text") description_output = gr.Textbox(label="Image Description") image_output = gr.Image(label="Generated Image") translate_btn.click( fn=full_pipeline, inputs=tamil_input, outputs=[english_output, image_output, description_output] ) demo.launch()