import gradio as gr import requests from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer from PIL import Image import torch import io import os import base64 # Load Hugging Face API key from environment HF_API_KEY = os.getenv("HF_API_KEY") # Add this in 'Variables and secrets' on HF Spaces if not HF_API_KEY: raise ValueError("HF_API_KEY is not set. Please add it in Hugging Face 'Variables and secrets'.") # API endpoint for image generation IMAGE_GEN_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell" HEADERS = {"Authorization": f"Bearer {HF_API_KEY}"} # Check if GPU is available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load translation model: Tamil to English translator_model = "Helsinki-NLP/opus-mt-mul-en" translator = MarianMTModel.from_pretrained(translator_model).to(device) translator_tokenizer = MarianTokenizer.from_pretrained(translator_model) # Load text generation model generator_model = "EleutherAI/gpt-neo-1.3B" generator = AutoModelForCausalLM.from_pretrained(generator_model).to(device) generator_tokenizer = AutoTokenizer.from_pretrained(generator_model) if generator_tokenizer.pad_token is None: generator_tokenizer.pad_token = generator_tokenizer.eos_token generator.config.pad_token_id = generator_tokenizer.pad_token_id def translate_tamil_to_english(text): """Translate Tamil text to English.""" try: inputs = translator_tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128).to(device) output = translator.generate(**inputs) return translator_tokenizer.decode(output[0], skip_special_tokens=True) except Exception as e: return f"Translation error: {str(e)}" def generate_text(prompt): """Generate creative text from English input.""" try: inputs = generator_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=128).to(device) output = generator.generate(**inputs, max_length=100) return generator_tokenizer.decode(output[0], skip_special_tokens=True) except Exception as e: return f"Text generation error: {str(e)}" def generate_image(prompt): """Generate image using Hugging Face inference API.""" try: response = requests.post(IMAGE_GEN_URL, headers=HEADERS, json={"inputs": prompt}) if response.status_code == 200: content_type = response.headers.get("content-type", "") if "image" in content_type: return Image.open(io.BytesIO(response.content)) else: result = response.json() if "image" in result: image_data = base64.b64decode(result["image"]) return Image.open(io.BytesIO(image_data)) except Exception as e: print("Error generating image:", e) return Image.new("RGB", (300, 300), "red") # fallback placeholder def process_input(tamil_text): """Pipeline: Translate → Generate Text → Generate Image""" english_text = translate_tamil_to_english(tamil_text) creative_text = generate_text(english_text) image = generate_image(english_text) return english_text, creative_text, image # Create Gradio UI interface = gr.Interface( fn=process_input, inputs=gr.Textbox(label="Enter Tamil Text"), outputs=[ gr.Textbox(label="Translated English Text"), gr.Textbox(label="Creative Text"), gr.Image(label="Generated Image") ], title="Tamil to English Translator & Image Generator", description="Enter Tamil text. This app translates it to English, generates a creative description, and produces an image based on the translated text." ) # Launch app interface.launch()