import gradio as gr import requests from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer from PIL import Image import torch import io import os from typing import Tuple # Load Hugging Face API key securely HF_API_KEY = os.getenv("HF_API_KEY") # You must set this as an environment variable if not HF_API_KEY: raise ValueError("HF_API_KEY is not set. Add it in Hugging Face 'Variables and Secrets' or local environment.") # API Endpoint for Image Generation IMAGE_GEN_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell" HEADERS = {"Authorization": f"Bearer {HF_API_KEY}"} # Check if GPU is available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load Tamil-to-English Translation Model translator_model = "Helsinki-NLP/opus-mt-mul-en" translator = MarianMTModel.from_pretrained(translator_model).to(device) translator_tokenizer = MarianTokenizer.from_pretrained(translator_model) # Load Text Generation Model generator_model = "EleutherAI/gpt-neo-1.3B" generator = AutoModelForCausalLM.from_pretrained(generator_model).to(device) generator_tokenizer = AutoTokenizer.from_pretrained(generator_model) if generator_tokenizer.pad_token is None: generator_tokenizer.pad_token = generator_tokenizer.eos_token def translate_tamil_to_english(text: str) -> str: """Translates Tamil text to English.""" inputs = translator_tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device) output = translator.generate(**inputs) return translator_tokenizer.decode(output[0], skip_special_tokens=True) def generate_text(prompt: str) -> str: """Generates a creative text based on English input.""" inputs = generator_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(device) output = generator.generate(**inputs, max_length=100) return generator_tokenizer.decode(output[0], skip_special_tokens=True) def generate_image(prompt: str) -> Image.Image: """Sends request to API for image generation.""" response = requests.post(IMAGE_GEN_URL, headers=HEADERS, json={"inputs": prompt}) try: if response.status_code == 200 and response.headers["content-type"].startswith("image"): return Image.open(io.BytesIO(response.content)) except Exception as e: print("Image generation error:", e) return Image.new("RGB", (300, 300), "red") # Fallback placeholder image def process_input(tamil_text: str) -> Tuple[str, str, Image.Image]: """Complete pipeline: Translation, Text Generation, and Image Generation.""" english_text = translate_tamil_to_english(tamil_text) creative_text = generate_text(english_text) image = generate_image(english_text) return english_text, creative_text, image # Gradio Interface interface = gr.Interface( fn=process_input, inputs=gr.Textbox(label="Enter Tamil Text"), outputs=[ gr.Textbox(label="Translated English Text"), gr.Textbox(label="Creative Text"), gr.Image(label="Generated Image") ], title="Tamil to English Translator & Image Generator", description="Enter Tamil text, and this app will translate it, generate a creative description, and create an image based on the text.", allow_flagging="never" # Avoids schema-related error in Spaces ) # Launch the app interface.launch()