import gradio as gr import requests from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer from PIL import Image import torch import io import os from typing import Tuple # Load HF token HF_API_KEY = os.getenv("HF_API_KEY") or "your_hf_token_here" # Replace this with your token if local if not HF_API_KEY: raise ValueError("HF_API_KEY is not set.") # Hugging Face image model IMAGE_GEN_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell" HEADERS = {"Authorization": f"Bearer {HF_API_KEY}"} device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Translation model (Tamil to English) translator_model = "Helsinki-NLP/opus-mt-mul-en" translator = MarianMTModel.from_pretrained(translator_model).to(device) translator_tokenizer = MarianTokenizer.from_pretrained(translator_model) # Text generation model generator_model = "EleutherAI/gpt-neo-1.3B" generator = AutoModelForCausalLM.from_pretrained(generator_model).to(device) generator_tokenizer = AutoTokenizer.from_pretrained(generator_model) generator_tokenizer.pad_token = generator_tokenizer.eos_token def translate_tamil_to_english(text: str) -> str: inputs = translator_tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device) output = translator.generate(**inputs) return translator_tokenizer.decode(output[0], skip_special_tokens=True) def generate_text(prompt: str) -> str: inputs = generator_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(device) output = generator.generate(**inputs, max_length=100, num_return_sequences=1) return generator_tokenizer.decode(output[0], skip_special_tokens=True) def generate_image(prompt: str) -> Image.Image: response = requests.post(IMAGE_GEN_URL, headers=HEADERS, json={"inputs": prompt}) try: if response.status_code == 200 and response.headers["content-type"].startswith("image"): return Image.open(io.BytesIO(response.content)) except Exception as e: print("Image generation failed:", e) return Image.new("RGB", (300, 300), color="gray") def process_input(tamil_text: str) -> Tuple[str, str, Image.Image]: english_text = translate_tamil_to_english(tamil_text) creative_text = generate_text(english_text) image = generate_image(english_text) return english_text, creative_text, image # Gradio app with gr.Blocks() as demo: gr.Markdown("## Tamil to English Translator with Text and Image Generator") tamil_input = gr.Textbox(label="Enter Tamil Text") translate_btn = gr.Button("Translate & Generate") english_output = gr.Textbox(label="Translated English") creative_output = gr.Textbox(label="Creative Text") image_output = gr.Image(label="Generated Image") translate_btn.click(fn=process_input, inputs=tamil_input, outputs=[english_output, creative_output, image_output]) demo.launch()