24Sureshkumar commited on
Commit
ef4cefc
·
verified ·
1 Parent(s): ad216b7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +132 -83
app.py CHANGED
@@ -1,91 +1,140 @@
1
- import gradio as gr
 
 
2
  import requests
3
  from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer
4
- from PIL import Image
5
- import torch
6
  import io
7
- import os
8
- import base64
9
-
10
- # Load Hugging Face API key from environment
11
- HF_API_KEY = os.getenv("HF_API_KEY") # Add this in 'Variables and secrets' on HF Spaces
12
- if not HF_API_KEY:
13
- raise ValueError("HF_API_KEY is not set. Please add it in Hugging Face 'Variables and secrets'.")
14
-
15
- # API endpoint for image generation
16
- IMAGE_GEN_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
17
- HEADERS = {"Authorization": f"Bearer {HF_API_KEY}"}
18
-
19
- # Check if GPU is available
20
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
21
-
22
- # Load translation model: Tamil to English
23
- translator_model = "Helsinki-NLP/opus-mt-mul-en"
24
- translator = MarianMTModel.from_pretrained(translator_model).to(device)
25
- translator_tokenizer = MarianTokenizer.from_pretrained(translator_model)
26
-
27
- # Load text generation model
28
- generator_model = "EleutherAI/gpt-neo-1.3B"
29
- generator = AutoModelForCausalLM.from_pretrained(generator_model).to(device)
30
- generator_tokenizer = AutoTokenizer.from_pretrained(generator_model)
31
- if generator_tokenizer.pad_token is None:
32
- generator_tokenizer.pad_token = generator_tokenizer.eos_token
33
- generator.config.pad_token_id = generator_tokenizer.pad_token_id
34
-
35
- def translate_tamil_to_english(text):
36
- """Translate Tamil text to English."""
37
- try:
38
- inputs = translator_tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128).to(device)
39
- output = translator.generate(**inputs)
40
- return translator_tokenizer.decode(output[0], skip_special_tokens=True)
41
- except Exception as e:
42
- return f"Translation error: {str(e)}"
43
 
44
- def generate_text(prompt):
45
- """Generate creative text from English input."""
46
- try:
47
- inputs = generator_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=128).to(device)
48
- output = generator.generate(**inputs, max_length=100)
49
- return generator_tokenizer.decode(output[0], skip_special_tokens=True)
50
- except Exception as e:
51
- return f"Text generation error: {str(e)}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  def generate_image(prompt):
54
- """Generate image using Hugging Face inference API."""
 
 
 
 
 
 
 
 
55
  try:
56
- response = requests.post(IMAGE_GEN_URL, headers=HEADERS, json={"inputs": prompt})
57
- if response.status_code == 200:
58
- content_type = response.headers.get("content-type", "")
59
- if "image" in content_type:
60
- return Image.open(io.BytesIO(response.content))
61
- else:
62
- result = response.json()
63
- if "image" in result:
64
- image_data = base64.b64decode(result["image"])
65
- return Image.open(io.BytesIO(image_data))
66
  except Exception as e:
67
- print("Error generating image:", e)
68
- return Image.new("RGB", (300, 300), "red") # fallback placeholder
69
-
70
- def process_input(tamil_text):
71
- """Pipeline: Translate Generate Text Generate Image"""
72
- english_text = translate_tamil_to_english(tamil_text)
73
- creative_text = generate_text(english_text)
74
- image = generate_image(english_text)
75
- return english_text, creative_text, image
76
-
77
- # Create Gradio UI
78
- interface = gr.Interface(
79
- fn=process_input,
80
- inputs=gr.Textbox(label="Enter Tamil Text"),
81
- outputs=[
82
- gr.Textbox(label="Translated English Text"),
83
- gr.Textbox(label="Creative Text"),
84
- gr.Image(label="Generated Image")
85
- ],
86
- title="Tamil to English Translator & Image Generator",
87
- description="Enter Tamil text. This app translates it to English, generates a creative description, and produces an image based on the translated text."
88
- )
89
-
90
- # Launch app
91
- interface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Install the required libraries
2
+ pip install transformers gradio Pillow requests
3
+ import os
4
  import requests
5
  from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer
6
+ from PIL import Image, ImageDraw
 
7
  import io
8
+ import gradio as gr
9
+ import torch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
+ # Detect if GPU is available
12
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
13
+
14
+ # Load the MarianMT model and tokenizer for translation (Tamil to English)
15
+ model_name = "Helsinki-NLP/opus-mt-mul-en"
16
+ translation_model = MarianMTModel.from_pretrained(model_name).to(device)
17
+ translation_tokenizer = MarianTokenizer.from_pretrained(model_name)
18
+
19
+ # Load GPT-Neo for creative text generation
20
+ text_generation_model_name = "EleutherAI/gpt-neo-1.3B"
21
+ text_generation_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name).to(device)
22
+ text_generation_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name)
23
+
24
+ # Add padding token to GPT-Neo tokenizer if not present
25
+ if text_generation_tokenizer.pad_token is None:
26
+ text_generation_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
27
+
28
+ # Set your Hugging Face API key
29
+ os.environ['HF_API_KEY'] = 'Your_HF_TOKEN' # Replace with your actual API key
30
+ api_key = os.getenv('HF_API_KEY')
31
+ if api_key is None:
32
+ raise ValueError("Hugging Face API key is not set. Please set it in your environment.")
33
+
34
+ headers = {"Authorization": f"Bearer {api_key}"}
35
 
36
+ # Define the API URL for image generation (replace with actual model URL)
37
+ API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell" # Replace with a valid image generation model
38
+
39
+ # Query Hugging Face API to generate image with error handling
40
+ def query(payload):
41
+ response = requests.post(API_URL, headers=headers, json=payload)
42
+ if response.status_code != 200:
43
+ print(f"Error: Received status code {response.status_code}")
44
+ print(f"Response: {response.text}")
45
+ return None
46
+ return response.content
47
+
48
+ # Translate Tamil text to English
49
+ def translate_text(tamil_text):
50
+ inputs = translation_tokenizer(tamil_text, return_tensors="pt", padding=True, truncation=True).to(device)
51
+ translated_tokens = translation_model.generate(**inputs)
52
+ translation = translation_tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
53
+ return translation
54
+
55
+ # Generate an image based on the translated text with error handling
56
  def generate_image(prompt):
57
+ image_bytes = query({"inputs": prompt})
58
+
59
+ if image_bytes is None:
60
+ # Return a blank image with error message
61
+ error_img = Image.new('RGB', (300, 300), color=(255, 0, 0))
62
+ d = ImageDraw.Draw(error_img)
63
+ d.text((10, 150), "Image Generation Failed", fill=(255, 255, 255))
64
+ return error_img
65
+
66
  try:
67
+ image = Image.open(io.BytesIO(image_bytes))
68
+ return image
 
 
 
 
 
 
 
 
69
  except Exception as e:
70
+ print(f"Error: {e}")
71
+ # Return an error image in case of failure
72
+ error_img = Image.new('RGB', (300, 300), color=(255, 0, 0))
73
+ d = ImageDraw.Draw(error_img)
74
+ d.text((10, 150), "Invalid Image Data", fill=(255, 255, 255))
75
+ return error_img
76
+
77
+ # Generate creative text based on the translated English text
78
+ def generate_creative_text(translated_text):
79
+ inputs = text_generation_tokenizer(translated_text, return_tensors="pt", padding=True, truncation=True).to(device)
80
+ generated_tokens = text_generation_model.generate(**inputs, max_length=100)
81
+ creative_text = text_generation_tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
82
+ return creative_text
83
+
84
+ # Function to handle the full workflow
85
+ def translate_generate_image_and_text(tamil_text):
86
+ # Step 1: Translate Tamil to English
87
+ translated_text = translate_text(tamil_text)
88
+
89
+ # Step 2: Generate an image from the translated text
90
+ image = generate_image(translated_text)
91
+
92
+ # Step 3: Generate creative text from the translated text
93
+ creative_text = generate_creative_text(translated_text)
94
+
95
+ return translated_text, creative_text, image
96
+
97
+ # Create a visually appealing Gradio interface
98
+ css = """
99
+ #transart-title {
100
+ font-size: 2.5em;
101
+ font-weight: bold;
102
+ color: #4CAF50;
103
+ text-align: center;
104
+ margin-bottom: 10px;
105
+ }
106
+ #transart-subtitle {
107
+ font-size: 1.25em;
108
+ text-align: center;
109
+ color: #555555;
110
+ margin-bottom: 20px;
111
+ }
112
+ body {
113
+ background-color: #f0f0f5;
114
+ }
115
+ .gradio-container {
116
+ font-family: 'Arial', sans-serif;
117
+ }
118
+ """
119
+
120
+ # Custom HTML for title and subtitle (can be displayed in Markdown)
121
+ title_markdown = """
122
+ # <div id="transart-title">TransArt</div>
123
+ ### <div id="transart-subtitle">Tamil to English Translation, Creative Text & Image Generation</div>
124
+ """
125
+
126
+ # Gradio interface with customized layout and aesthetics
127
+ with gr.Blocks(css=css) as interface:
128
+ gr.Markdown(title_markdown) # Title and subtitle in Markdown
129
+ with gr.Row():
130
+ with gr.Column():
131
+ tamil_input = gr.Textbox(label="Enter Tamil Text", placeholder="Type Tamil text here...", lines=3) # Input for Tamil text
132
+ with gr.Column():
133
+ translated_output = gr.Textbox(label="Translated Text", interactive=False) # Output for translated text
134
+ creative_text_output = gr.Textbox(label="Creative Generated Text", interactive=False) # Output for creative text
135
+ generated_image_output = gr.Image(label="Generated Image") # Output for generated image
136
+
137
+ gr.Button("Generate").click(fn=translate_generate_image_and_text, inputs=tamil_input, outputs=[translated_output, creative_text_output, generated_image_output])
138
+
139
+ # Launch the Gradio app
140
+ interface.launch(debug=True, server_name="0.0.0.0")