24Sureshkumar commited on
Commit
edac42b
·
verified ·
1 Parent(s): 5f1796d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -268
app.py CHANGED
@@ -1,280 +1,52 @@
1
  import os
2
- import io
3
- import requests
4
  import gradio as gr
5
- from groq import Groq
6
- from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer
7
- from deep_translator import GoogleTranslator
8
- from PIL import Image, ImageDraw
9
- import joblib
10
- import time
11
- from indic_transliteration import sanscript
12
- from indic_transliteration.sanscript import transliterate
13
- import openai
14
  import torch
15
- import warnings
16
- from huggingface_hub import InferenceApi
17
 
18
- # Detect if GPU is available
19
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
20
 
21
- # Set up Groq API key
22
- api_key = os.getenv("GROQ_API_KEY")
23
- client = Groq(api_key=api_key)
24
 
25
- # Set your Hugging Face API key
26
- os.environ['HF_API_KEY']
27
- api_key = os.getenv('HF_API_KEY')
28
- if api_key is None:
29
- raise ValueError("Hugging Face API key is not set. Please set it in your environment.")
30
 
31
- # Set OpenAI API key for text generation
32
- openai.api_key = os.getenv('OPENAI_API_KEY')
33
 
34
- headers = {"Authorization": f"Bearer {api_key}"}
 
35
 
36
- # Load GPT-Neo for creative text generation
37
- text_generation_model_name = "EleutherAI/gpt-neo-1.3B"
38
- text_generation_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name).to(device)
39
- text_generation_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name)
 
 
40
 
41
- # Add padding token to GPT-Neo tokenizer if not present
42
- if text_generation_tokenizer.pad_token is None:
43
- text_generation_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
44
-
45
- # Define the API URL for image generation
46
- API_URL = "https://api-inference.huggingface.co/models/CompVis/stable-diffusion-v1-4"
47
-
48
- # Load the trained sentiment analysis model and preprocessing steps
49
- with warnings.catch_warnings():
50
- warnings.simplefilter("ignore")
51
- model = joblib.load('model.pkl')
52
-
53
- # Function to query Hugging Face API
54
- def query(payload, max_retries=5):
55
- for attempt in range(max_retries):
56
- response = requests.post(API_URL, headers=headers, json=payload)
57
-
58
- if response.status_code == 503:
59
- print(f"Model is still loading, retrying... Attempt {attempt + 1}/{max_retries}")
60
- estimated_time = min(response.json().get("estimated_time", 60), 60)
61
- time.sleep(estimated_time)
62
- continue
63
-
64
- if response.status_code != 200:
65
- print(f"Error: Received status code {response.status_code}")
66
- print(f"Response: {response.text}")
67
- return None
68
-
69
- return response.content
70
-
71
- print(f"Failed to generate image after {max_retries} attempts.")
72
- return None
73
-
74
- # Function to generate image
75
- def generate_image(prompt):
76
- image_bytes = query({"inputs": prompt})
77
-
78
- if image_bytes is None:
79
- error_img = Image.new('RGB', (300, 300), color=(255, 0, 0))
80
- d = ImageDraw.Draw(error_img)
81
- d.text((10, 150), "Image Generation Failed", fill=(255, 255, 255))
82
- return error_img
83
-
84
- try:
85
- image = Image.open(io.BytesIO(image_bytes))
86
- return image
87
- except Exception as e:
88
- print(f"Error: {e}")
89
- error_img = Image.new('RGB', (300, 300), color=(255, 0, 0))
90
- d = ImageDraw.Draw(error_img)
91
- d.text((10, 150), "Invalid Image Data", fill=(255, 255, 255))
92
- return error_img
93
-
94
- # Tamil Audio to Tamil text
95
- def transcribe_audio(audio_path):
96
- if audio_path is None:
97
- return "Please upload an audio file."
98
- try:
99
- with open(audio_path, "rb") as file:
100
- transcription = client.audio.transcriptions.create(
101
- file=(os.path.basename(audio_path), file.read()),
102
- model="whisper-large-v3",
103
- response_format="verbose_json",
104
- )
105
- return transcription.text
106
- except Exception as e:
107
- return f"An error occurred: {str(e)}"
108
-
109
- # Transliterate Romanized Tamil (in English letters) to Tamil script
110
- def transliterate_to_tamil(romanized_text):
111
- try:
112
- # Step 1: Normalize the input for better transliteration results
113
- romanized_text = romanized_text.strip().lower() # Remove extra spaces and convert to lowercase
114
-
115
- # Step 2: Handle common punctuation that might interrupt transliteration
116
- romanized_text = romanized_text.replace(".", " ").replace(",", " ").replace("?", " ").replace("!", " ")
117
-
118
- # Step 3: Apply ITRANS transliteration
119
- tamil_text = transliterate(romanized_text, sanscript.ITRANS, sanscript.TAMIL)
120
-
121
- return tamil_text
122
- except Exception as e:
123
- return f"An error occurred during transliteration: {str(e)}"
124
-
125
- # Function to translate Tamil text to English using deep-translator
126
- def translate_tamil_to_english(tamil_text):
127
- if not tamil_text:
128
- return "Please provide text to translate."
129
- try:
130
- translator = GoogleTranslator(source='ta', target='en')
131
- translated_text = translator.translate(tamil_text)
132
-
133
- # Predict sentiment from translated text
134
- sentiment_result = predict_sentiment(translated_text)
135
-
136
- return translated_text, sentiment_result, translated_text
137
- except Exception as e:
138
- return f"An error occurred during translation: {str(e)}", None, None
139
-
140
- # Function to predict sentiment from English text
141
- def predict_sentiment(english_text):
142
- if not english_text:
143
- return "No text provided for sentiment analysis."
144
- try:
145
- sentiment = model.predict([english_text])[0]
146
- return f"Sentiment: {sentiment}"
147
- except Exception as e:
148
- return f"An error occurred during sentiment prediction: {str(e)}"
149
-
150
- # Generate creative text based on the translated English text
151
- def generate_creative_text(english_text):
152
- if not english_text:
153
- return "Please provide text to generate creative content."
154
-
155
- try:
156
- inputs = text_generation_tokenizer(english_text, return_tensors="pt", padding=True, truncation=True).to(device)
157
-
158
- # Set parameters to control the output and avoid repetition
159
- generated_tokens = text_generation_model.generate(
160
- **inputs,
161
- max_length=60,
162
- num_return_sequences=1,
163
- no_repeat_ngram_size=3,
164
- temperature=0.7,
165
- top_p=0.9,
166
- do_sample=True,
167
- early_stopping=True
168
- )
169
-
170
- creative_text = text_generation_tokenizer.decode(generated_tokens[0], skip_special_tokens=True).strip()
171
- return creative_text
172
-
173
- except Exception as e:
174
- return f"An error occurred during text generation: {str(e)}"
175
 
176
  # Create Gradio interface
177
- with gr.Blocks() as demo:
178
- gr.Markdown(
179
- """
180
- <h1 style='color: #4CAF50;'>🎙️ Tamil Audio Transcription, Translation, Sentiment Prediction, Creative Text Generation, and Image Generation</h1>
181
- <p style='color: #000080;'>Upload an audio file to get the Tamil transcription, edit the transcription or type Romanized Tamil to convert it to Tamil script, translate it to English, predict the sentiment of the translated text, generate creative English text, and generate an image.</p>
182
- """
183
- )
184
-
185
- # Input for audio file
186
- with gr.Row():
187
- audio_input = gr.Audio(type="filepath", label="Upload Audio File")
188
- transcribe_button = gr.Button("Transcribe Audio", elem_id="transcribe_btn")
189
-
190
- # Output field for Tamil transcription with ability to edit or type Romanized Tamil
191
- transcription_output = gr.Textbox(label="Transcription (Tamil or Romanized Tamil)", interactive=True ,elem_id="transcription_output")
192
-
193
- # Button for transliterating Romanized Tamil to Tamil script
194
- transliterate_button = gr.Button("Convert to Tamil Script", elem_id="transliterate_btn")
195
-
196
- # Input field for Tamil text and translate button
197
- with gr.Row():
198
- translate_button = gr.Button("Translate to English", elem_id="translate_btn")
199
-
200
- # Output field for English translation
201
- translation_output = gr.Textbox(label="Translation (English)", elem_id="translation_output")
202
-
203
- # Output field for sentiment prediction
204
- sentiment_output = gr.Textbox(label="Sentiment", elem_id="sentiment_output")
205
-
206
- # Button to generate creative text
207
- creative_text_button = gr.Button("Generate Creative Text", elem_id="creative_btn")
208
-
209
- # Output field for creative text
210
- creative_text_output = gr.Textbox(label="Creative Text", elem_id="creative_output")
211
-
212
- # Button to generate image
213
- generate_button = gr.Button("Generate Image", elem_id="generate_btn")
214
-
215
- # Output field for image file
216
- image_output = gr.Image(label="Generated Image")
217
-
218
- # Define variable to hold the translated English text
219
- translated_text_var = gr.State()
220
-
221
- # Define button click actions
222
- transcribe_button.click(
223
- fn=transcribe_audio,
224
- inputs=audio_input,
225
- outputs=transcription_output,
226
- )
227
-
228
- transliterate_button.click(
229
- fn=transliterate_to_tamil,
230
- inputs=transcription_output,
231
- outputs=transcription_output,
232
- )
233
-
234
- translate_button.click(
235
- fn=translate_tamil_to_english,
236
- inputs=transcription_output,
237
- outputs=[translation_output, sentiment_output, translated_text_var],
238
- )
239
-
240
- creative_text_button.click(
241
- fn=generate_creative_text,
242
- inputs=translated_text_var,
243
- outputs=creative_text_output,
244
- )
245
-
246
- generate_button.click(
247
- fn=generate_image,
248
- inputs=translated_text_var,
249
- outputs=image_output,
250
- )
251
-
252
- # Apply custom CSS
253
- demo.css = """
254
- #transcribe_btn, #transliterate_btn, #translate_btn, #creative_btn, #generate_btn {
255
- background-color: #05907B; /* Change button color */
256
- color: white; /* Change text color */
257
- }
258
-
259
- #translation_output,#transcription_output, #sentiment_output, #creative_output {
260
- background-color: #f0f8ff; /* Change background color of text areas */
261
- }
262
-
263
- h1 {
264
- color: #4CAF50; /* Main heading color */
265
- }
266
-
267
- p {
268
- color: #000080; /* Plain text color */
269
- }
270
-
271
- /* Add thick border to entire app */
272
- .gradio-container {
273
- border: 5px solid #05907B; /* Thick border color */
274
- padding: 10px; /* Padding inside the border */
275
- border-radius: 10px; /* Optional: add rounded corners */
276
- }
277
- """
278
-
279
- # Launch the interface and ensure code stops afterward
280
- demo.launch(share=True)
 
1
  import os
 
 
2
  import gradio as gr
3
+ from transformers import pipeline
4
+ from diffusers import StableDiffusionPipeline
 
 
 
 
 
 
 
5
  import torch
 
 
6
 
 
 
7
 
8
+ HF_TOKEN = os.getenv("HF_TOKEN")
 
 
9
 
10
+ # 1. Tamil to English translator (public model, no token required)
11
+ translator = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
 
 
 
12
 
13
+ # 2. English text generator (GPT-2, public model, no token required)
14
+ generator = pipeline("text-generation", model="gpt2")
15
 
16
+ # 3. Stable Diffusion image generator (needs token)
17
+ device = "cuda" if torch.cuda.is_available() else "cpu"
18
 
19
+ image_pipe = StableDiffusionPipeline.from_pretrained(
20
+ "CompVis/stable-diffusion-v1-4",
21
+ use_auth_token=HF_TOKEN,
22
+ torch_dtype=torch.float16 if device == "cuda" else torch.float32
23
+ )
24
+ image_pipe = image_pipe.to(device)
25
 
26
+ def generate_image_from_tamil(tamil_text):
27
+ # Translate Tamil → English
28
+ translated = translator(tamil_text, max_length=100)[0]['translation_text']
29
+
30
+ # Generate English text from translated sentence
31
+ generated = generator(translated, max_length=50, num_return_sequences=1)[0]['generated_text']
32
+
33
+ # Generate image from generated English text
34
+ image = image_pipe(generated).images[0]
35
+
36
+ return translated, generated, image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
  # Create Gradio interface
39
+ iface = gr.Interface(
40
+ fn=generate_image_from_tamil,
41
+ inputs=gr.Textbox(lines=2, label="Enter Tamil Text"),
42
+ outputs=[
43
+ gr.Textbox(label="Translated English Text"),
44
+ gr.Textbox(label="Generated English Prompt"),
45
+ gr.Image(label="Generated Image")
46
+ ],
47
+ title="Tamil Text to English and Image Generator",
48
+ description="Translate Tamil to English, generate English text, and create image using Stable Diffusion."
49
+ )
50
+
51
+ # Launch Gradio app with public link
52
+ iface.launch(share=True)