Update app.py
Browse files
app.py
CHANGED
@@ -5,70 +5,71 @@ from PIL import Image
|
|
5 |
import torch
|
6 |
import io
|
7 |
import os
|
|
|
8 |
|
9 |
-
# Load Hugging Face API key
|
10 |
-
HF_API_KEY = os.getenv("HF_API_KEY")
|
11 |
if not HF_API_KEY:
|
12 |
-
raise ValueError("HF_API_KEY is not set.
|
13 |
|
14 |
-
# API
|
15 |
IMAGE_GEN_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
|
16 |
HEADERS = {"Authorization": f"Bearer {HF_API_KEY}"}
|
17 |
|
18 |
# Check if GPU is available
|
19 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
|
21 |
-
# Load Tamil
|
22 |
translator_model = "Helsinki-NLP/opus-mt-mul-en"
|
23 |
translator = MarianMTModel.from_pretrained(translator_model).to(device)
|
24 |
translator_tokenizer = MarianTokenizer.from_pretrained(translator_model)
|
25 |
|
26 |
-
# Load
|
27 |
generator_model = "EleutherAI/gpt-neo-1.3B"
|
28 |
generator = AutoModelForCausalLM.from_pretrained(generator_model).to(device)
|
29 |
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model)
|
30 |
if generator_tokenizer.pad_token is None:
|
31 |
generator_tokenizer.pad_token = generator_tokenizer.eos_token
|
|
|
32 |
|
33 |
def translate_tamil_to_english(text):
|
34 |
-
"""
|
35 |
-
inputs = translator_tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device)
|
36 |
output = translator.generate(**inputs)
|
37 |
return translator_tokenizer.decode(output[0], skip_special_tokens=True)
|
38 |
|
39 |
def generate_text(prompt):
|
40 |
-
"""
|
41 |
-
inputs = generator_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(device)
|
42 |
output = generator.generate(**inputs, max_length=100)
|
43 |
return generator_tokenizer.decode(output[0], skip_special_tokens=True)
|
44 |
|
45 |
def generate_image(prompt):
|
46 |
-
"""
|
47 |
response = requests.post(IMAGE_GEN_URL, headers=HEADERS, json={"inputs": prompt})
|
48 |
if response.status_code == 200:
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
def process_input(tamil_text):
|
53 |
-
"""
|
54 |
english_text = translate_tamil_to_english(tamil_text)
|
55 |
creative_text = generate_text(english_text)
|
56 |
image = generate_image(english_text)
|
57 |
return english_text, creative_text, image
|
58 |
|
59 |
-
# Create Gradio
|
60 |
-
|
61 |
-
# interface = gr.Interface(
|
62 |
-
# fn=process_input,
|
63 |
-
# inputs=gr.Textbox(label="Enter Tamil Text"),
|
64 |
-
# outputs=[
|
65 |
-
# gr.Textbox(label="Translated English Text"),
|
66 |
-
# gr.Textbox(label="Creative Text"),
|
67 |
-
# gr.Image(label="Generated Image")
|
68 |
-
# ],
|
69 |
-
# title="Tamil to English Translator & Image Generator",
|
70 |
-
# description="Enter Tamil text, and this app will translate it, generate a creative description, and create an image based on the text."
|
71 |
-
# )
|
72 |
interface = gr.Interface(
|
73 |
fn=process_input,
|
74 |
inputs=gr.Textbox(label="Enter Tamil Text"),
|
@@ -78,7 +79,8 @@ interface = gr.Interface(
|
|
78 |
gr.Image(label="Generated Image")
|
79 |
],
|
80 |
title="Tamil to English Translator & Image Generator",
|
81 |
-
description="Enter Tamil text
|
82 |
)
|
83 |
-
|
84 |
-
|
|
|
|
5 |
import torch
|
6 |
import io
|
7 |
import os
|
8 |
+
import base64
|
9 |
|
10 |
+
# Load Hugging Face API key from environment
|
11 |
+
HF_API_KEY = os.getenv("HF_API_KEY") # Add this in 'Variables and secrets' on HF Spaces
|
12 |
if not HF_API_KEY:
|
13 |
+
raise ValueError("HF_API_KEY is not set. Please add it in Hugging Face 'Variables and secrets'.")
|
14 |
|
15 |
+
# API endpoint for image generation
|
16 |
IMAGE_GEN_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
|
17 |
HEADERS = {"Authorization": f"Bearer {HF_API_KEY}"}
|
18 |
|
19 |
# Check if GPU is available
|
20 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
|
22 |
+
# Load translation model: Tamil to English
|
23 |
translator_model = "Helsinki-NLP/opus-mt-mul-en"
|
24 |
translator = MarianMTModel.from_pretrained(translator_model).to(device)
|
25 |
translator_tokenizer = MarianTokenizer.from_pretrained(translator_model)
|
26 |
|
27 |
+
# Load text generation model
|
28 |
generator_model = "EleutherAI/gpt-neo-1.3B"
|
29 |
generator = AutoModelForCausalLM.from_pretrained(generator_model).to(device)
|
30 |
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model)
|
31 |
if generator_tokenizer.pad_token is None:
|
32 |
generator_tokenizer.pad_token = generator_tokenizer.eos_token
|
33 |
+
generator.config.pad_token_id = generator_tokenizer.pad_token_id
|
34 |
|
35 |
def translate_tamil_to_english(text):
|
36 |
+
"""Translate Tamil text to English."""
|
37 |
+
inputs = translator_tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128).to(device)
|
38 |
output = translator.generate(**inputs)
|
39 |
return translator_tokenizer.decode(output[0], skip_special_tokens=True)
|
40 |
|
41 |
def generate_text(prompt):
|
42 |
+
"""Generate creative text from English input."""
|
43 |
+
inputs = generator_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=128).to(device)
|
44 |
output = generator.generate(**inputs, max_length=100)
|
45 |
return generator_tokenizer.decode(output[0], skip_special_tokens=True)
|
46 |
|
47 |
def generate_image(prompt):
|
48 |
+
"""Generate image using Hugging Face inference API."""
|
49 |
response = requests.post(IMAGE_GEN_URL, headers=HEADERS, json={"inputs": prompt})
|
50 |
if response.status_code == 200:
|
51 |
+
# Check if raw image or base64 encoded
|
52 |
+
content_type = response.headers.get("content-type", "")
|
53 |
+
if "image" in content_type:
|
54 |
+
return Image.open(io.BytesIO(response.content))
|
55 |
+
else:
|
56 |
+
try:
|
57 |
+
result = response.json()
|
58 |
+
if "image" in result:
|
59 |
+
image_data = base64.b64decode(result["image"])
|
60 |
+
return Image.open(io.BytesIO(image_data))
|
61 |
+
except Exception as e:
|
62 |
+
print("Error parsing image:", e)
|
63 |
+
return Image.new("RGB", (300, 300), "red") # fallback placeholder
|
64 |
|
65 |
def process_input(tamil_text):
|
66 |
+
"""Pipeline: Translate → Generate Text → Generate Image"""
|
67 |
english_text = translate_tamil_to_english(tamil_text)
|
68 |
creative_text = generate_text(english_text)
|
69 |
image = generate_image(english_text)
|
70 |
return english_text, creative_text, image
|
71 |
|
72 |
+
# Create Gradio UI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
interface = gr.Interface(
|
74 |
fn=process_input,
|
75 |
inputs=gr.Textbox(label="Enter Tamil Text"),
|
|
|
79 |
gr.Image(label="Generated Image")
|
80 |
],
|
81 |
title="Tamil to English Translator & Image Generator",
|
82 |
+
description="Enter Tamil text. This app translates it to English, generates a creative description, and produces an image based on the translated text."
|
83 |
)
|
84 |
+
|
85 |
+
# Launch app
|
86 |
+
interface.launch()
|