Update app.py
Browse files
app.py
CHANGED
@@ -1,123 +1,119 @@
|
|
1 |
# app.py
|
|
|
2 |
import gradio as gr
|
3 |
-
from transformers import pipeline
|
4 |
from diffusers import StableDiffusionPipeline
|
5 |
import torch
|
6 |
import re
|
7 |
import os
|
8 |
from huggingface_hub import login
|
9 |
|
|
|
10 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
11 |
if not HF_TOKEN:
|
12 |
raise ValueError("Hugging Face token not found in environment variables!")
|
13 |
-
|
14 |
-
# Authenticate with Hugging Face Hub
|
15 |
else:
|
16 |
login(token=HF_TOKEN)
|
17 |
|
18 |
-
#
|
19 |
def load_models():
|
20 |
-
#
|
21 |
translator = pipeline(
|
22 |
"translation",
|
23 |
model="facebook/nllb-200-distilled-600M",
|
24 |
src_lang="tam_Taml",
|
25 |
tgt_lang="eng_Latn",
|
26 |
device=0 if torch.cuda.is_available() else -1,
|
27 |
-
use_auth_token=HF_TOKEN
|
28 |
)
|
29 |
-
|
30 |
-
# Text generation
|
31 |
text_generator = pipeline(
|
32 |
-
"text-generation",
|
33 |
model="gpt2-medium",
|
34 |
device=0 if torch.cuda.is_available() else -1,
|
35 |
-
use_auth_token=HF_TOKEN
|
36 |
)
|
37 |
-
|
38 |
-
#
|
39 |
if torch.cuda.is_available():
|
40 |
image_pipe = StableDiffusionPipeline.from_pretrained(
|
41 |
"runwayml/stable-diffusion-v1-5",
|
42 |
torch_dtype=torch.float16,
|
43 |
revision="fp16",
|
44 |
-
use_auth_token=HF_TOKEN
|
45 |
).to("cuda")
|
46 |
else:
|
47 |
image_pipe = StableDiffusionPipeline.from_pretrained(
|
48 |
"runwayml/stable-diffusion-v1-5",
|
49 |
-
use_auth_token=HF_TOKEN
|
50 |
)
|
51 |
-
|
52 |
return translator, text_generator, image_pipe
|
53 |
|
54 |
-
# Load models at startup
|
55 |
try:
|
56 |
translator, text_generator, image_pipe = load_models()
|
57 |
except Exception as e:
|
58 |
raise RuntimeError(f"Model loading failed: {str(e)}")
|
59 |
|
|
|
60 |
def clean_text(text):
|
61 |
-
|
62 |
-
|
63 |
-
return
|
64 |
|
|
|
65 |
def process_content(tamil_input, creativity_level):
|
66 |
-
outputs = {}
|
67 |
-
error = ""
|
68 |
-
|
69 |
try:
|
70 |
-
#
|
71 |
translation_result = translator(tamil_input)
|
72 |
english_text = translation_result[0]['translation_text']
|
73 |
-
|
74 |
-
|
75 |
-
# Generate image
|
76 |
image = image_pipe(
|
77 |
-
english_text,
|
78 |
guidance_scale=creativity_level,
|
79 |
num_inference_steps=30
|
80 |
).images[0]
|
81 |
-
|
82 |
-
|
83 |
-
# Generate creative text
|
84 |
creative_output = text_generator(
|
85 |
f"Create creative content about: {english_text}",
|
86 |
max_length=150,
|
87 |
-
temperature=creativity_level/10,
|
88 |
num_return_sequences=1
|
89 |
)
|
90 |
-
|
91 |
-
|
92 |
except Exception as e:
|
93 |
-
|
94 |
-
|
95 |
-
return outputs, error
|
96 |
|
97 |
# Gradio UI
|
98 |
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
99 |
gr.Markdown("# 🌐 தமிழ் உரை முதல் பட உருவாக்கம் (Tamil to Image Generator)")
|
100 |
gr.Markdown("தமிழில் உள்ளீடு செய்து → ஆங்கில மொழிபெயர்ப்பு + AI உருவம் + படைப்பு உரை பெறவும்")
|
101 |
-
|
102 |
with gr.Row():
|
103 |
with gr.Column():
|
104 |
tamil_input = gr.Textbox(
|
105 |
-
label="தமிழ் உள்ளீடு",
|
106 |
-
placeholder="
|
107 |
lines=3
|
108 |
)
|
109 |
creativity = gr.Slider(
|
110 |
-
label="படைப்பாற்றல் நிலை",
|
111 |
minimum=1, maximum=10, value=7, step=1
|
112 |
)
|
113 |
submit_btn = gr.Button("உருவாக்கு")
|
114 |
-
|
115 |
with gr.Column():
|
116 |
translation_box = gr.Textbox(label="ஆங்கில மொழிபெயர்ப்பு")
|
117 |
creative_output = gr.Textbox(label="படைப்பு உரை", lines=3)
|
118 |
image_output = gr.Image(label="உருவாக்கப்பட்ட படம்")
|
119 |
error_output = gr.Textbox(label="பிழை செய்திகள்", visible=True)
|
120 |
-
|
|
|
121 |
examples = gr.Examples(
|
122 |
examples=[
|
123 |
["கடலின் அடியில் மறைந்திருக்கும் பழைய நகரம்", 8],
|
@@ -126,24 +122,24 @@ with gr.Blocks(theme=gr.themes.Soft()) as app:
|
|
126 |
],
|
127 |
inputs=[tamil_input, creativity]
|
128 |
)
|
129 |
-
|
130 |
-
# Clear inputs
|
131 |
clear_btn = gr.Button("துடைத்து துவக்கவும்")
|
132 |
-
|
133 |
def clear_all():
|
134 |
return "", "", "", None, ""
|
135 |
-
|
136 |
submit_btn.click(
|
137 |
fn=process_content,
|
138 |
inputs=[tamil_input, creativity],
|
139 |
-
outputs=[
|
140 |
)
|
141 |
-
|
142 |
clear_btn.click(
|
143 |
fn=clear_all,
|
144 |
inputs=[],
|
145 |
outputs=[tamil_input, translation_box, creative_output, image_output, error_output]
|
146 |
)
|
147 |
|
|
|
148 |
if __name__ == "__main__":
|
149 |
-
app.launch()
|
|
|
1 |
# app.py
|
2 |
+
|
3 |
import gradio as gr
|
4 |
+
from transformers import pipeline
|
5 |
from diffusers import StableDiffusionPipeline
|
6 |
import torch
|
7 |
import re
|
8 |
import os
|
9 |
from huggingface_hub import login
|
10 |
|
11 |
+
# Get Hugging Face token from environment variable
|
12 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
13 |
if not HF_TOKEN:
|
14 |
raise ValueError("Hugging Face token not found in environment variables!")
|
|
|
|
|
15 |
else:
|
16 |
login(token=HF_TOKEN)
|
17 |
|
18 |
+
# Load all models
|
19 |
def load_models():
|
20 |
+
# Translation model: Tamil → English
|
21 |
translator = pipeline(
|
22 |
"translation",
|
23 |
model="facebook/nllb-200-distilled-600M",
|
24 |
src_lang="tam_Taml",
|
25 |
tgt_lang="eng_Latn",
|
26 |
device=0 if torch.cuda.is_available() else -1,
|
27 |
+
use_auth_token=HF_TOKEN
|
28 |
)
|
29 |
+
|
30 |
+
# Text generation model
|
31 |
text_generator = pipeline(
|
32 |
+
"text-generation",
|
33 |
model="gpt2-medium",
|
34 |
device=0 if torch.cuda.is_available() else -1,
|
35 |
+
use_auth_token=HF_TOKEN
|
36 |
)
|
37 |
+
|
38 |
+
# Stable Diffusion for image generation
|
39 |
if torch.cuda.is_available():
|
40 |
image_pipe = StableDiffusionPipeline.from_pretrained(
|
41 |
"runwayml/stable-diffusion-v1-5",
|
42 |
torch_dtype=torch.float16,
|
43 |
revision="fp16",
|
44 |
+
use_auth_token=HF_TOKEN
|
45 |
).to("cuda")
|
46 |
else:
|
47 |
image_pipe = StableDiffusionPipeline.from_pretrained(
|
48 |
"runwayml/stable-diffusion-v1-5",
|
49 |
+
use_auth_token=HF_TOKEN
|
50 |
)
|
51 |
+
|
52 |
return translator, text_generator, image_pipe
|
53 |
|
54 |
+
# Load models once at startup
|
55 |
try:
|
56 |
translator, text_generator, image_pipe = load_models()
|
57 |
except Exception as e:
|
58 |
raise RuntimeError(f"Model loading failed: {str(e)}")
|
59 |
|
60 |
+
# Clean generated text
|
61 |
def clean_text(text):
|
62 |
+
cleaned = re.sub(r'[^a-zA-Z0-9,.!?\'"\- ]+', '', text).strip()
|
63 |
+
sentences = re.split(r'(?<=[.!?])\s+', cleaned)
|
64 |
+
return ' '.join(sentences[:2]) # return first 2 sentences
|
65 |
|
66 |
+
# Main processing function
|
67 |
def process_content(tamil_input, creativity_level):
|
|
|
|
|
|
|
68 |
try:
|
69 |
+
# Translation
|
70 |
translation_result = translator(tamil_input)
|
71 |
english_text = translation_result[0]['translation_text']
|
72 |
+
|
73 |
+
# Image generation
|
|
|
74 |
image = image_pipe(
|
75 |
+
english_text,
|
76 |
guidance_scale=creativity_level,
|
77 |
num_inference_steps=30
|
78 |
).images[0]
|
79 |
+
|
80 |
+
# Text generation
|
|
|
81 |
creative_output = text_generator(
|
82 |
f"Create creative content about: {english_text}",
|
83 |
max_length=150,
|
84 |
+
temperature=creativity_level / 10,
|
85 |
num_return_sequences=1
|
86 |
)
|
87 |
+
|
88 |
+
return english_text, clean_text(creative_output[0]['generated_text']), image, ""
|
89 |
except Exception as e:
|
90 |
+
return "", "", None, f"⚠️ Error: {str(e)}"
|
|
|
|
|
91 |
|
92 |
# Gradio UI
|
93 |
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
94 |
gr.Markdown("# 🌐 தமிழ் உரை முதல் பட உருவாக்கம் (Tamil to Image Generator)")
|
95 |
gr.Markdown("தமிழில் உள்ளீடு செய்து → ஆங்கில மொழிபெயர்ப்பு + AI உருவம் + படைப்பு உரை பெறவும்")
|
96 |
+
|
97 |
with gr.Row():
|
98 |
with gr.Column():
|
99 |
tamil_input = gr.Textbox(
|
100 |
+
label="தமிழ் உள்ளீடு",
|
101 |
+
placeholder="உதாரணம்: பனி படர்ந்த குளிர்காலத்தில் வெப்பமான காபி குடிக்கும் பழங்குடி பெண்",
|
102 |
lines=3
|
103 |
)
|
104 |
creativity = gr.Slider(
|
105 |
+
label="படைப்பாற்றல் நிலை",
|
106 |
minimum=1, maximum=10, value=7, step=1
|
107 |
)
|
108 |
submit_btn = gr.Button("உருவாக்கு")
|
109 |
+
|
110 |
with gr.Column():
|
111 |
translation_box = gr.Textbox(label="ஆங்கில மொழிபெயர்ப்பு")
|
112 |
creative_output = gr.Textbox(label="படைப்பு உரை", lines=3)
|
113 |
image_output = gr.Image(label="உருவாக்கப்பட்ட படம்")
|
114 |
error_output = gr.Textbox(label="பிழை செய்திகள்", visible=True)
|
115 |
+
|
116 |
+
# Example inputs
|
117 |
examples = gr.Examples(
|
118 |
examples=[
|
119 |
["கடலின் அடியில் மறைந்திருக்கும் பழைய நகரம்", 8],
|
|
|
122 |
],
|
123 |
inputs=[tamil_input, creativity]
|
124 |
)
|
125 |
+
|
126 |
+
# Clear all inputs/outputs
|
127 |
clear_btn = gr.Button("துடைத்து துவக்கவும்")
|
|
|
128 |
def clear_all():
|
129 |
return "", "", "", None, ""
|
130 |
+
|
131 |
submit_btn.click(
|
132 |
fn=process_content,
|
133 |
inputs=[tamil_input, creativity],
|
134 |
+
outputs=[translation_box, creative_output, image_output, error_output]
|
135 |
)
|
136 |
+
|
137 |
clear_btn.click(
|
138 |
fn=clear_all,
|
139 |
inputs=[],
|
140 |
outputs=[tamil_input, translation_box, creative_output, image_output, error_output]
|
141 |
)
|
142 |
|
143 |
+
# Launch the app
|
144 |
if __name__ == "__main__":
|
145 |
+
app.queue().launch()
|