24Sureshkumar commited on
Commit
803ddb4
·
verified ·
1 Parent(s): e5964e8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -170
app.py CHANGED
@@ -1,182 +1,47 @@
1
- # Import required libraries
2
- import gradio as gr
3
- import requests
4
- from getpass import getpass
5
- import openai
6
- from PIL import Image
7
- import io
8
 
9
- # Input your Hugging Face and Groq tokens securely
10
- Transalate_token = getpass("Enter Hugging Face Translation Token: ")
11
- Image_Token = getpass("Enter Hugging Face Image Generation Token: ")
12
- Content_Token = getpass("Enter Groq Content Generation Token: ")
13
- Image_prompt_token = getpass("Enter Groq Prompt Generation Token: ")
14
 
15
- # API Keys for GPT and Gemini (replace with your actual keys)
16
- openai.api_key = getpass("Enter OpenAI API Key: ")
17
- # gemini_token = getpass("Enter Gemini API Key: ") # Placeholder, you will need API access
18
 
19
- # API Headers
20
- Translate = {"Authorization": f"Bearer {Transalate_token}"}
21
- Image_generation = {"Authorization": f"Bearer {Image_Token}"}
22
- Content_generation = {
23
- "Authorization": f"Bearer {Content_Token}",
24
- "Content-Type": "application/json"
25
- }
26
- Image_Prompt = {
27
- "Authorization": f"Bearer {Image_prompt_token}",
28
- "Content-Type": "application/json"
29
- }
30
 
31
- # Translation Model API URL (Tamil to English)
32
- translation_url = "https://api-inference.huggingface.co/models/facebook/mbart-large-50-many-to-one-mmt"
33
 
34
- # Text-to-Image Model API URLs
35
- image_generation_urls = {
36
- "black-forest-labs/FLUX.1-schnell": "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell",
37
- "CompVis/stable-diffusion-v1-4": "https://api-inference.huggingface.co/models/CompVis/stable-diffusion-v1-4",
38
- "black-forest-labs/FLUX.1-dev": "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
39
- }
40
-
41
- # Default image generation model
42
- default_image_model = "black-forest-labs/FLUX.1-schnell"
43
-
44
- # Content generation models
45
- content_models = {
46
- "GPT-4 (OpenAI)": "gpt-4",
47
- "Gemini-1 (DeepMind)": "gemini-1",
48
- "llama-3.1-70b-versatile": "llama-3.1-70b-versatile",
49
- "mixtral-8x7b-32768": "mixtral-8x7b-32768"
50
- }
51
-
52
- # Default content generation model
53
- default_content_model = "GPT-4 (OpenAI)"
54
-
55
- # Function to query Hugging Face translation model
56
- def translate_text(text):
57
- payload = {"inputs": text}
58
- response = requests.post(translation_url, headers=Translate, json=payload)
59
- if response.status_code == 200:
60
- result = response.json()
61
- translated_text = result[0]['generated_text']
62
- return translated_text
63
- else:
64
- return f"Translation Error {response.status_code}: {response.text}"
65
-
66
- # Function to generate content using GPT or Gemini
67
- def generate_content(english_text, max_tokens, temperature, model):
68
- if model == "gpt-4":
69
- # Using OpenAI's GPT model
70
- response = openai.Completion.create(
71
- engine=model, # GPT model (like gpt-4)
72
- prompt=f"Write educational content about {english_text} within {max_tokens} tokens.",
73
- max_tokens=max_tokens,
74
- temperature=temperature
75
- )
76
- return response.choices[0].text.strip()
77
-
78
- # elif model == "gemini-1":
79
- # # Placeholder: Add code to call Gemini API here
80
- # # Using the Gemini API (this requires the correct endpoint and token from Google DeepMind)
81
- # # For example, you would create a POST request similar to OpenAI's API.
82
- # url = "https://api.deepmind.com/gemini/v1/generate"
83
- # headers = {
84
- # "Authorization": f"Bearer {gemini_token}",
85
- # "Content-Type": "application/json"
86
- # }
87
- # payload = {
88
- # "model": "gemini-1",
89
- # "input": f"Write educational content about {english_text} within {max_tokens} tokens.",
90
- # "temperature": temperature,
91
- # "max_tokens": max_tokens
92
- # }
93
- # response = requests.post(url, json=payload, headers=headers)
94
- # if response.status_code == 200:
95
- # return response.json()['choices'][0]['text']
96
- # else:
97
- # return f"Gemini Content Generation Error {response.status_code}: {response.text}"
98
-
99
- else:
100
- # Default to the Groq API or other models if selected
101
- url = "https://api.groq.com/openai/v1/chat/completions"
102
- payload = {
103
- "model": model,
104
- "messages": [
105
- {"role": "system", "content": "You are a creative and insightful writer."},
106
- {"role": "user", "content": f"Write educational content about {english_text} within {max_tokens} tokens."}
107
- ],
108
- "max_tokens": max_tokens,
109
- "temperature": temperature
110
- }
111
- response = requests.post(url, json=payload, headers=Content_generation)
112
- if response.status_code == 200:
113
- result = response.json()
114
- return result['choices'][0]['message']['content']
115
- else:
116
- return f"Content Generation Error: {response.status_code}"
117
-
118
- # Function to generate image prompt
119
- def generate_image_prompt(english_text):
120
- payload = {
121
- "model": "mixtral-8x7b-32768",
122
- "messages": [
123
- {"role": "system", "content": "You are a professional Text to image prompt generator."},
124
- {"role": "user", "content": f"Create a text to image generation prompt about {english_text} within 30 tokens."}
125
- ],
126
- "max_tokens": 30
127
- }
128
- response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=payload, headers=Image_Prompt)
129
- if response.status_code == 200:
130
- result = response.json()
131
- return result['choices'][0]['message']['content']
132
- else:
133
- return f"Prompt Generation Error: {response.status_code}"
134
-
135
- # Function to generate an image from the prompt
136
- def generate_image(image_prompt, model_url):
137
- data = {"inputs": image_prompt}
138
- response = requests.post(model_url, headers=Image_generation, json=data)
139
- if response.status_code == 200:
140
- # Convert the image bytes to a PIL Image
141
- image = Image.open(io.BytesIO(response.content))
142
- # Save image to a temporary file-like object for Gradio
143
- image.save("/tmp/generated_image.png") # Save the image to a file
144
- return "/tmp/generated_image.png" # Return the path to the image
145
  else:
146
- return f"Image Generation Error {response.status_code}: {response.text}"
 
 
147
 
148
- # Gradio App
149
- def fusionmind_app(tamil_input, temperature, max_tokens, content_model, image_model):
150
- # Step 1: Translation (Tamil to English)
151
- english_text = translate_text(tamil_input)
152
 
153
- # Step 2: Generate Educational Content
154
- content_output = generate_content(english_text, max_tokens, temperature, content_models[content_model])
 
 
155
 
156
- # Step 3: Generate Image from the prompt
157
- image_prompt = generate_image_prompt(english_text)
158
- image_data = generate_image(image_prompt, image_generation_urls[image_model])
159
 
160
- return english_text, content_output, image_data
 
 
 
 
 
161
 
162
- # Gradio Interface
163
- interface = gr.Interface(
164
- fn=fusionmind_app,
165
- inputs=[
166
- gr.Textbox(label="Enter Tamil Text"),
167
- gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature"),
168
- gr.Slider(minimum=100, maximum=400, value=200, label="Max Tokens for Content Generation"),
169
- gr.Dropdown(list(content_models.keys()), label="Select Content Generation Model", value=default_content_model),
170
- gr.Dropdown(list(image_generation_urls.keys()), label="Select Image Generation Model", value=default_image_model)
171
- ],
172
- outputs=[
173
- gr.Textbox(label="Translated English Text"),
174
- gr.Textbox(label="Generated Content"),
175
- gr.Image(label="Generated Image") # Display the generated image
176
- ],
177
- title="TransArt: A Multimodal Application for Vernacular Language Translation and Image Synthesis",
178
- description="Translate Tamil to English, generate educational content, and generate related images!"
179
- )
180
 
181
- # Launch Gradio App
182
- interface.launch(debug=True)
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+ from diffusers import StableDiffusionPipeline
4
+ import torch
 
 
 
5
 
6
+ # Hugging Face token from secrets
7
+ HF_TOKEN = st.secrets["HF_TOKEN"]
 
 
 
8
 
9
+ # Streamlit page settings
10
+ st.set_page_config(page_title="Tamil to Image Generator", layout="centered")
 
11
 
12
+ st.title("🧠 Tamil to Image Generator 🎨")
13
+ st.markdown("Enter Tamil text → Translate to English Generate a creative story → Create an AI Image")
 
 
 
 
 
 
 
 
 
14
 
15
+ # Input Tamil text
16
+ tamil_input = st.text_area("Enter Tamil text", placeholder="உலகின் அழகான கடற்கரை பற்றி சொல்...")
17
 
18
+ if st.button("Generate Image"):
19
+ if not tamil_input.strip():
20
+ st.warning("Please enter some Tamil text.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  else:
22
+ with st.spinner("🔁 Translating Tamil to English..."):
23
+ translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ta-en")
24
+ translated = translator(tamil_input, max_length=100)[0]['translation_text']
25
 
26
+ st.success("✅ Translation done")
27
+ st.markdown(f"**📝 Translated Text:** `{translated}`")
 
 
28
 
29
+ with st.spinner("🧠 Generating creative English text..."):
30
+ generator = pipeline("text-generation", model="gpt2")
31
+ prompt_text = f"Describe this beautifully: {translated}"
32
+ generated = generator(prompt_text, max_length=80, do_sample=True, top_k=50)[0]['generated_text']
33
 
34
+ st.success("✅ Text generation done")
35
+ st.markdown(f"**🎨 Creative Description:** `{generated}`")
 
36
 
37
+ with st.spinner("🖼️ Generating AI Image... (may take 20–30 seconds)"):
38
+ pipe = StableDiffusionPipeline.from_pretrained(
39
+ "runwayml/stable-diffusion-v1-5",
40
+ torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
41
+ use_auth_token=HF_TOKEN
42
+ ).to("cuda" if torch.cuda.is_available() else "cpu")
43
 
44
+ image = pipe(prompt=generated).images[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
+ st.success("✅ Image generated!")
47
+ st.image(image, caption="🖼️ AI Generated Image", use_column_width=True)