Update app.py
Browse files
app.py
CHANGED
@@ -5,11 +5,12 @@ from PIL import Image
|
|
5 |
import torch
|
6 |
import io
|
7 |
import os
|
|
|
8 |
|
9 |
# Load Hugging Face API key securely
|
10 |
-
HF_API_KEY = os.getenv("HF_API_KEY")
|
11 |
if not HF_API_KEY:
|
12 |
-
raise ValueError("HF_API_KEY is not set. Add it in Hugging Face 'Variables and Secrets'.")
|
13 |
|
14 |
# API Endpoint for Image Generation
|
15 |
IMAGE_GEN_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
|
@@ -30,45 +31,36 @@ generator_tokenizer = AutoTokenizer.from_pretrained(generator_model)
|
|
30 |
if generator_tokenizer.pad_token is None:
|
31 |
generator_tokenizer.pad_token = generator_tokenizer.eos_token
|
32 |
|
33 |
-
def translate_tamil_to_english(text):
|
34 |
"""Translates Tamil text to English."""
|
35 |
inputs = translator_tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device)
|
36 |
output = translator.generate(**inputs)
|
37 |
return translator_tokenizer.decode(output[0], skip_special_tokens=True)
|
38 |
|
39 |
-
def generate_text(prompt):
|
40 |
"""Generates a creative text based on English input."""
|
41 |
inputs = generator_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(device)
|
42 |
output = generator.generate(**inputs, max_length=100)
|
43 |
return generator_tokenizer.decode(output[0], skip_special_tokens=True)
|
44 |
|
45 |
-
def generate_image(prompt):
|
46 |
"""Sends request to API for image generation."""
|
47 |
response = requests.post(IMAGE_GEN_URL, headers=HEADERS, json={"inputs": prompt})
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
51 |
|
52 |
-
def process_input(tamil_text):
|
53 |
"""Complete pipeline: Translation, Text Generation, and Image Generation."""
|
54 |
english_text = translate_tamil_to_english(tamil_text)
|
55 |
creative_text = generate_text(english_text)
|
56 |
image = generate_image(english_text)
|
57 |
return english_text, creative_text, image
|
58 |
|
59 |
-
#
|
60 |
-
|
61 |
-
# interface = gr.Interface(
|
62 |
-
# fn=process_input,
|
63 |
-
# inputs=gr.Textbox(label="Enter Tamil Text"),
|
64 |
-
# outputs=[
|
65 |
-
# gr.Textbox(label="Translated English Text"),
|
66 |
-
# gr.Textbox(label="Creative Text"),
|
67 |
-
# gr.Image(label="Generated Image")
|
68 |
-
# ],
|
69 |
-
# title="Tamil to English Translator & Image Generator",
|
70 |
-
# description="Enter Tamil text, and this app will translate it, generate a creative description, and create an image based on the text."
|
71 |
-
# )
|
72 |
interface = gr.Interface(
|
73 |
fn=process_input,
|
74 |
inputs=gr.Textbox(label="Enter Tamil Text"),
|
@@ -78,7 +70,9 @@ interface = gr.Interface(
|
|
78 |
gr.Image(label="Generated Image")
|
79 |
],
|
80 |
title="Tamil to English Translator & Image Generator",
|
81 |
-
description="Enter Tamil text, and this app will translate it, generate a creative description, and create an image based on the text."
|
|
|
82 |
)
|
83 |
-
|
|
|
84 |
interface.launch()
|
|
|
5 |
import torch
|
6 |
import io
|
7 |
import os
|
8 |
+
from typing import Tuple
|
9 |
|
10 |
# Load Hugging Face API key securely
|
11 |
+
HF_API_KEY = os.getenv("HF_API_KEY") # You must set this as an environment variable
|
12 |
if not HF_API_KEY:
|
13 |
+
raise ValueError("HF_API_KEY is not set. Add it in Hugging Face 'Variables and Secrets' or local environment.")
|
14 |
|
15 |
# API Endpoint for Image Generation
|
16 |
IMAGE_GEN_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
|
|
|
31 |
if generator_tokenizer.pad_token is None:
|
32 |
generator_tokenizer.pad_token = generator_tokenizer.eos_token
|
33 |
|
34 |
+
def translate_tamil_to_english(text: str) -> str:
|
35 |
"""Translates Tamil text to English."""
|
36 |
inputs = translator_tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device)
|
37 |
output = translator.generate(**inputs)
|
38 |
return translator_tokenizer.decode(output[0], skip_special_tokens=True)
|
39 |
|
40 |
+
def generate_text(prompt: str) -> str:
|
41 |
"""Generates a creative text based on English input."""
|
42 |
inputs = generator_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(device)
|
43 |
output = generator.generate(**inputs, max_length=100)
|
44 |
return generator_tokenizer.decode(output[0], skip_special_tokens=True)
|
45 |
|
46 |
+
def generate_image(prompt: str) -> Image.Image:
|
47 |
"""Sends request to API for image generation."""
|
48 |
response = requests.post(IMAGE_GEN_URL, headers=HEADERS, json={"inputs": prompt})
|
49 |
+
try:
|
50 |
+
if response.status_code == 200 and response.headers["content-type"].startswith("image"):
|
51 |
+
return Image.open(io.BytesIO(response.content))
|
52 |
+
except Exception as e:
|
53 |
+
print("Image generation error:", e)
|
54 |
+
return Image.new("RGB", (300, 300), "red") # Fallback placeholder image
|
55 |
|
56 |
+
def process_input(tamil_text: str) -> Tuple[str, str, Image.Image]:
|
57 |
"""Complete pipeline: Translation, Text Generation, and Image Generation."""
|
58 |
english_text = translate_tamil_to_english(tamil_text)
|
59 |
creative_text = generate_text(english_text)
|
60 |
image = generate_image(english_text)
|
61 |
return english_text, creative_text, image
|
62 |
|
63 |
+
# Gradio Interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
interface = gr.Interface(
|
65 |
fn=process_input,
|
66 |
inputs=gr.Textbox(label="Enter Tamil Text"),
|
|
|
70 |
gr.Image(label="Generated Image")
|
71 |
],
|
72 |
title="Tamil to English Translator & Image Generator",
|
73 |
+
description="Enter Tamil text, and this app will translate it, generate a creative description, and create an image based on the text.",
|
74 |
+
allow_flagging="never" # Avoids schema-related error in Spaces
|
75 |
)
|
76 |
+
|
77 |
+
# Launch the app
|
78 |
interface.launch()
|