Update app.py
Browse files
app.py
CHANGED
@@ -1,114 +1,74 @@
|
|
1 |
-
import os
|
2 |
import streamlit as st
|
3 |
-
from dotenv import load_dotenv
|
4 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
5 |
from diffusers import StableDiffusionPipeline
|
6 |
import torch
|
7 |
|
8 |
-
|
9 |
-
load_dotenv()
|
10 |
-
# Set Streamlit page config
|
11 |
st.set_page_config(
|
12 |
page_title="Tamil Creative Studio",
|
13 |
page_icon="🇮🇳",
|
14 |
layout="centered",
|
15 |
-
initial_sidebar_state="collapsed"
|
16 |
)
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
@st.cache_resource(show_spinner=False)
|
24 |
def load_all_models():
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
trans_tokenizer = AutoTokenizer.from_pretrained(
|
29 |
-
"ai4bharat/indictrans2-ta-en-dist-200M",
|
30 |
-
token=HF_TOKEN
|
31 |
-
)
|
32 |
-
trans_model = AutoModelForSeq2SeqLM.from_pretrained(
|
33 |
-
"ai4bharat/indictrans2-ta-en-dist-200M",
|
34 |
-
token=HF_TOKEN
|
35 |
-
)
|
36 |
-
|
37 |
-
# Load text generation model
|
38 |
text_gen = pipeline("text-generation", model="gpt2", device=-1)
|
39 |
-
|
40 |
-
# Load image generation model
|
41 |
img_pipe = StableDiffusionPipeline.from_pretrained(
|
42 |
"stabilityai/stable-diffusion-2-base",
|
43 |
torch_dtype=torch.float32,
|
44 |
safety_checker=None
|
45 |
).to("cpu")
|
46 |
-
|
47 |
-
return trans_tokenizer, trans_model, text_gen, img_pipe
|
48 |
-
|
49 |
|
50 |
def translate_tamil(text, tokenizer, model):
|
51 |
-
inputs = tokenizer(
|
52 |
-
|
53 |
-
|
54 |
-
padding=True,
|
55 |
-
truncation=True,
|
56 |
-
max_length=128
|
57 |
-
)
|
58 |
-
|
59 |
-
generated = model.generate(
|
60 |
-
**inputs,
|
61 |
-
max_length=150,
|
62 |
-
num_beams=5,
|
63 |
-
early_stopping=True
|
64 |
-
)
|
65 |
-
|
66 |
-
return tokenizer.batch_decode(
|
67 |
-
generated,
|
68 |
-
skip_special_tokens=True,
|
69 |
-
clean_up_tokenization_spaces=True
|
70 |
-
)[0]
|
71 |
|
72 |
def main():
|
73 |
-
load_css(
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
<p>Translate Tamil text and generate creative content</p>
|
80 |
-
</div>
|
81 |
-
""", unsafe_allow_html=True)
|
82 |
-
|
83 |
tokenizer, model, text_gen, img_pipe = load_all_models()
|
84 |
-
|
85 |
tamil_text = st.text_area("**தமிழ் உரை:**", height=150, placeholder="உங்கள் உரையை இங்கே உள்ளிடவும்...")
|
86 |
-
|
87 |
-
if st.button("
|
88 |
if not tamil_text.strip():
|
89 |
-
st.warning("
|
90 |
-
|
91 |
|
92 |
with st.spinner("மொழிபெயர்க்கிறது..."):
|
93 |
eng = translate_tamil(tamil_text, tokenizer, model)
|
94 |
-
|
95 |
-
with st.expander("🔤 Translation", expanded=True):
|
96 |
-
st.success(eng)
|
97 |
|
98 |
with st.spinner("உரை உருவாக்குதல்..."):
|
99 |
-
creative = text_gen(
|
100 |
-
|
101 |
-
max_length=80,
|
102 |
-
num_return_sequences=1
|
103 |
-
)[0]["generated_text"]
|
104 |
-
|
105 |
-
st.info("📝 Creative Text:")
|
106 |
-
st.write(creative)
|
107 |
|
108 |
with st.spinner("படத்தை உருவாக்குதல்..."):
|
109 |
img = img_pipe(eng, num_inference_steps=40, guidance_scale=8.5).images[0]
|
110 |
-
|
111 |
-
st.image(img, caption="🎨 Generated Image", use_column_width=True)
|
112 |
|
113 |
if __name__ == "__main__":
|
114 |
main()
|
|
|
|
|
1 |
import streamlit as st
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
3 |
from diffusers import StableDiffusionPipeline
|
4 |
import torch
|
5 |
|
|
|
|
|
|
|
6 |
st.set_page_config(
|
7 |
page_title="Tamil Creative Studio",
|
8 |
page_icon="🇮🇳",
|
9 |
layout="centered",
|
|
|
10 |
)
|
11 |
|
12 |
+
def load_css():
|
13 |
+
st.markdown(
|
14 |
+
"""<style>
|
15 |
+
.header {
|
16 |
+
text-align: center;
|
17 |
+
padding: 20px;
|
18 |
+
background: #f9f9f9;
|
19 |
+
border-radius: 10px;
|
20 |
+
margin-bottom: 20px;
|
21 |
+
}
|
22 |
+
.header h1 { color: #cc0000; }
|
23 |
+
.header p { color: #333; font-style: italic; }
|
24 |
+
</style>""",
|
25 |
+
unsafe_allow_html=True,
|
26 |
+
)
|
27 |
|
28 |
@st.cache_resource(show_spinner=False)
|
29 |
def load_all_models():
|
30 |
+
model_id = "ai4bharat/indictrans2-indic-en-dist-200M"
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
32 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
text_gen = pipeline("text-generation", model="gpt2", device=-1)
|
|
|
|
|
34 |
img_pipe = StableDiffusionPipeline.from_pretrained(
|
35 |
"stabilityai/stable-diffusion-2-base",
|
36 |
torch_dtype=torch.float32,
|
37 |
safety_checker=None
|
38 |
).to("cpu")
|
39 |
+
return tokenizer, model, text_gen, img_pipe
|
|
|
|
|
40 |
|
41 |
def translate_tamil(text, tokenizer, model):
|
42 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128)
|
43 |
+
outs = model.generate(**inputs, max_length=150, num_beams=5, early_stopping=True)
|
44 |
+
return tokenizer.decode(outs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
def main():
|
47 |
+
load_css()
|
48 |
+
st.markdown(
|
49 |
+
'<div class="header"><h1>🌐 தமிழ் → English → Creative Studio</h1>'
|
50 |
+
'<p>Translate Tamil text and generate creative content</p></div>',
|
51 |
+
unsafe_allow_html=True
|
52 |
+
)
|
|
|
|
|
|
|
|
|
53 |
tokenizer, model, text_gen, img_pipe = load_all_models()
|
|
|
54 |
tamil_text = st.text_area("**தமிழ் உரை:**", height=150, placeholder="உங்கள் உரையை இங்கே உள்ளிடவும்...")
|
55 |
+
|
56 |
+
if st.button("உருவாக்கு"):
|
57 |
if not tamil_text.strip():
|
58 |
+
st.warning("உரையை உள்ளிடவும்.")
|
59 |
+
return
|
60 |
|
61 |
with st.spinner("மொழிபெயர்க்கிறது..."):
|
62 |
eng = translate_tamil(tamil_text, tokenizer, model)
|
63 |
+
st.success(eng)
|
|
|
|
|
64 |
|
65 |
with st.spinner("உரை உருவாக்குதல்..."):
|
66 |
+
creative = text_gen(f"Create a creative description about: {eng}", max_length=80, num_return_sequences=1)[0]["generated_text"]
|
67 |
+
st.info(creative)
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
with st.spinner("படத்தை உருவாக்குதல்..."):
|
70 |
img = img_pipe(eng, num_inference_steps=40, guidance_scale=8.5).images[0]
|
71 |
+
st.image(img, caption="Generated Image", use_column_width=True)
|
|
|
72 |
|
73 |
if __name__ == "__main__":
|
74 |
main()
|