24Sureshkumar's picture
Update app.py
f67d206 verified
raw
history blame
5.81 kB
import streamlit as st
import torch
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
from transformers import AutoTokenizer, AutoModelForCausalLM
from diffusers import StableDiffusionPipeline
from rouge_score import rouge_scorer
from PIL import Image
import tempfile
import os
import time
import clip
import torchvision.transforms as transforms
# Use CUDA if available
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load translation model (Tamil to English)
translator_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt").to(device)
translator_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
translator_tokenizer.src_lang = "ta_IN"
# Load GPT-2 for creative text generation
gen_model = AutoModelForCausalLM.from_pretrained("gpt2").to(device)
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")
# Load a lightweight image generation model
pipe = StableDiffusionPipeline.from_pretrained(
"OFA-Sys/small-stable-diffusion-v0",
torch_dtype=torch.float32,
use_auth_token=os.getenv("HF_TOKEN") # Set in Hugging Face Space secrets
).to(device)
pipe.safety_checker = None # Optional: disable for speed
# Load CLIP model for image-text similarity
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)
# Translation Function
def translate_tamil_to_english(text, reference=None):
start = time.time()
inputs = translator_tokenizer(text, return_tensors="pt").to(device)
outputs = translator_model.generate(
**inputs,
forced_bos_token_id=translator_tokenizer.lang_code_to_id["en_XX"]
)
translated = translator_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
duration = round(time.time() - start, 2)
rouge_l = None
if reference:
scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
score = scorer.score(reference.lower(), translated.lower())
rouge_l = round(score["rougeL"].fmeasure, 4)
return translated, duration, rouge_l
# Creative Text Generator with Perplexity
def generate_creative_text(prompt, max_length=100):
start = time.time()
input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
output = gen_model.generate(input_ids, max_length=max_length, do_sample=True, top_k=50, temperature=0.9)
text = gen_tokenizer.decode(output[0], skip_special_tokens=True)
duration = round(time.time() - start, 2)
tokens = text.split()
repetition_rate = sum(t1 == t2 for t1, t2 in zip(tokens, tokens[1:])) / len(tokens)
# Perplexity calculation
with torch.no_grad():
input_ids = gen_tokenizer.encode(text, return_tensors="pt").to(device)
outputs = gen_model(input_ids, labels=input_ids)
loss = outputs.loss
perplexity = torch.exp(loss).item()
return text, duration, len(tokens), round(repetition_rate, 4), round(perplexity, 4)
# AI Image Generator with CLIP Similarity
def generate_image(prompt):
try:
start = time.time()
result = pipe(prompt)
image = result.images[0].resize((256, 256))
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
image.save(tmp_file.name)
# CLIP similarity
image_input = clip_preprocess(image).unsqueeze(0).to(device)
text_input = clip.tokenize([prompt]).to(device)
with torch.no_grad():
image_features = clip_model.encode_image(image_input)
text_features = clip_model.encode_text(text_input)
similarity = torch.cosine_similarity(image_features, text_features).item()
return tmp_file.name, round(time.time() - start, 2), round(similarity, 4)
except Exception as e:
return None, f"Image generation failed: {str(e)}", None
# Streamlit UI
st.set_page_config(page_title="Tamil β†’ English + AI Art", layout="centered")
st.title("🧠 Tamil β†’ English + 🎨 Creative Text + AI Image")
tamil_input = st.text_area("✍️ Enter Tamil text here", height=150)
reference_input = st.text_input("πŸ“˜ Optional: Reference English translation for ROUGE-L")
if st.button("πŸš€ Generate Output"):
if not tamil_input.strip():
st.warning("Please enter Tamil text.")
else:
with st.spinner("πŸ”„ Translating Tamil to English..."):
english_text, t_time, rouge_l = translate_tamil_to_english(tamil_input, reference_input)
st.success(f"βœ… Translated in {t_time} seconds")
st.markdown(f"**πŸ“ English Translation:** `{english_text}`")
if rouge_l is not None:
st.markdown(f"πŸ“Š **ROUGE-L Score:** `{rouge_l}`")
else:
st.info("ℹ️ ROUGE-L not calculated. Reference not provided.")
with st.spinner("🎨 Generating image..."):
image_path, img_time, clip_score = generate_image(english_text)
if image_path:
st.success(f"πŸ–ΌοΈ Image generated in {img_time} seconds")
st.image(Image.open(image_path), caption="AI-Generated Image", use_column_width=True)
st.markdown(f"πŸ” **CLIP Text-Image Similarity:** `{clip_score}`")
else:
st.error(image_path)
with st.spinner("πŸ’‘ Generating creative text..."):
creative, c_time, tokens, rep_rate, perplexity = generate_creative_text(english_text)
st.success(f"✨ Creative text generated in {c_time} seconds")
st.markdown("**🧠 Creative Output:**")
st.text(creative)
st.markdown(f"πŸ“Œ Tokens: `{tokens}`")
st.markdown(f"πŸ” Repetition Rate: `{rep_rate}`")
st.markdown(f"πŸ“‰ Perplexity: `{perplexity}`")
st.markdown("---")
st.caption("Built by Sureshkumar R using MBart, GPT-2 & Stable Diffusion on Hugging Face")